cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348264 a(n) is the number of iterations that n requires to reach a fixed point under the map x -> A348173(x).

Original entry on oeis.org

0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 0
Offset: 1

Views

Author

Amiram Eldar, Oct 09 2021

Keywords

Comments

a(n) first differs from A011765(n+2) at n = 84.
The fixed points are terms of A348004, so a(n) = 0 if and only if n is a term of A348004.
Conjecture: essentially partial sums of A219977 (verified for n <= 5000).

Examples

			a(1) = 0 since 1 is in A348004.
a(2) = 1 since there is one iteration of the map x -> A348173(x) starting from 2: 2 -> 1.
a(84) = 2 since there are 2 iterations of the map x -> A348173(x) starting from 84: 84 -> 78 -> 39.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^e - 1; uphi[1] = 1; uphi[n_] := Times @@ f @@@ FactorInteger[n]; s[n_] := Plus @@ DeleteDuplicates[uphi /@ Select[Divisors[n], CoprimeQ[#, n/#] &]]; a[n_] := -2 + Length@ FixedPointList[s, n]; Array[a, 100]