A348267 Primes of the form q^3+r^5+s^7, where q,r,s are consecutive primes.
19504103, 410711297, 895293793, 19205982415663, 27139128435043, 122997897555661, 2351321783571193, 33026024797765183, 44544286011297461, 257023170905666323, 630639912549644209, 896737512757442999, 2267254920439040789, 2344105012311523369, 25786002910400593997
Offset: 1
Keywords
Examples
19504103 is a term because 5^3+7^5+11^7 = 19504103 is prime; 410711297 is a term because 11^3+13^5+17^7 = 410711297 is prime.
Programs
-
Mathematica
Select[(#[[1]]^3 + #[[2]]^5 + #[[3]]^7) & /@ Partition[Select[Range[1000], PrimeQ], 3, 1], PrimeQ] (* Amiram Eldar, Oct 11 2021 *)
-
Sage
def Q3R5S7(x): return Primes().unrank(x)^3+Primes().unrank(x+1)^5+Primes().unrank(x+2)^7 A348267 = [Q3R5S7(x) for x in range(0,10^3) if Q3R5S7(x) in Primes()]
Comments