cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348273 Noninfinitary superabundant numbers: numbers m such that nisigma(m)/m > nisigma(k)/k for all k < m, where nisigma(m) is the sum of noninfinitary divisors of m (A348271).

This page as a plain text file.
%I A348273 #5 Oct 12 2021 14:01:08
%S A348273 1,4,12,16,36,48,144,720,3600,25200,176400,226800,1587600,1940400,
%T A348273 2494800,17463600,32432400,192099600,227026800,2497294800,3632428800,
%U A348273 32464832400,39956716800
%N A348273 Noninfinitary superabundant numbers: numbers m such that nisigma(m)/m > nisigma(k)/k for all k < m, where nisigma(m) is the sum of noninfinitary divisors of m (A348271).
%C A348273 The least term k with A348271(k)/k > m for m = 1, 2, 3, .... is 36, 3600, 1587600, ...
%t A348273 f[p_, e_] := Module[{b = IntegerDigits[e, 2], m}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ f @@@ FactorInteger[n]; s[n_] := DivisorSigma[1,n] - isigma[n]; seq = {}; rm = -1; Do[r1 = s[n]/n; If[r1 > rm, rm = r1; AppendTo[seq, n]],{n, 1, 10^6}]; seq
%Y A348273 Cf. A348271.
%Y A348273 Subsequence of A348272.
%Y A348273 The noninfinitary version of A004394.
%Y A348273 Similar sequences: A002110 (unitary), A037992 (infinitary), A061742 (exponential), A292984, A329882.
%K A348273 nonn,more
%O A348273 1,2
%A A348273 _Amiram Eldar_, Oct 09 2021