cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348275 Odd noninfinitary abundant numbers: the odd terms of A348274.

This page as a plain text file.
%I A348275 #9 Oct 13 2021 10:31:43
%S A348275 99225,1091475,1289925,1334025,1576575,1686825,1715175,1863225,
%T A348275 1885275,2027025,2061675,2282175,2304225,2395575,2401245,2436525,
%U A348275 2480625,2650725,2723175,2789325,2877525,2962575,3031875,3075975,3132675,3185325,3186225,3296475,3353805,3501225
%N A348275 Odd noninfinitary abundant numbers: the odd terms of A348274.
%C A348275 The number of terms below 10^k, for k = 5, 6, ..., are 1, 113, 630, 7771, 73685, ... Apparently this sequence has an asymptotic density 0.000007...
%H A348275 Amiram Eldar, <a href="/A348275/b348275.txt">Table of n, a(n) for n = 1..10000</a>
%e A348275 99225 is a term since A348271(99225) = 107207 > 99225.
%t A348275 f[p_, e_] := Module[{b = IntegerDigits[e, 2], m}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ f @@@ FactorInteger[n]; s[n_] := DivisorSigma[1,n] - isigma[n]; Select[Range[1, 2*10^6, 2], s[#] > # &]
%Y A348275 Cf. A348271.
%Y A348275 Subsequence of A005231 and A348274.
%Y A348275 Similar sequences: A094889, A127666, A129485, A293186, A321147.
%K A348275 nonn
%O A348275 1,1
%A A348275 _Amiram Eldar_, Oct 09 2021