This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A348290 #19 Oct 11 2021 07:43:27 %S A348290 1,1,1,1,1,1,1,1,1,1,2,7,22,57,127,253,463,793,1288,2003,3005,4380, %T A348290 6255,8855,12630,18508,28358,45783,77408,134883,237888,418513,727513, %U A348290 1243163,2083888,3426771,5535911,8808206,13850761,21615771,33638409,52455339,82332229,130506914,209273284 %N A348290 a(n) = Sum_{k=0..floor(n/10)} binomial(n-5*k,5*k). %H A348290 Seiichi Manyama, <a href="/A348290/b348290.txt">Table of n, a(n) for n = 0..1000</a> %H A348290 <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1,0,0,0,0,1). %F A348290 G.f.: (1-x)^4/((1-x)^5 - x^10). %F A348290 a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) + a(n-10). %o A348290 (PARI) a(n) = sum(k=0, n\10, binomial(n-5*k, 5*k)); %o A348290 (PARI) my(N=66, x='x+O('x^N)); Vec((1-x)^4/((1-x)^5-x^10)) %Y A348290 Cf. A000045, A005252, A100134, A348289. %K A348290 nonn,easy %O A348290 0,11 %A A348290 _Seiichi Manyama_, Oct 10 2021