This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A348296 #47 Jan 05 2024 14:28:56 %S A348296 1,2,1,2,4,1,4,2,4,1,2,4,8,1,8,2,8,1,2,8,4,8,1,4,8,2,4,8,1,2,4,8,16,1, %T A348296 16,2,16,1,2,16,4,16,1,4,16,2,4,16,1,2,4,16,8,16,1,8,16,2,8,16,1,2,8, %U A348296 16,4,8,16,1,4,8,16,2,4,8,16,1,2,4,8,16,32 %N A348296 Irregular table T(n, k), n > 0, k = 1..A000120(n), read by rows; the n-th contains, in ascending order, the distinct powers of 2 summing to n. %H A348296 Michael De Vlieger, <a href="/A348296/b348296.txt">Table of n, a(n) for n = 1..10870</a> (rows n = 1..2000, flattened) %H A348296 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %F A348296 T(n, k) = 2^A133457(n, k). %F A348296 T(n, 1) = A006519(n). %F A348296 T(n, A000120(n)) = A053644(n). %F A348296 Sum_{k = 1..A000120(n)} T(n, k) = n. %F A348296 Sum_{k = 1..A000120(n)} T(n, k) * (-1)^(k-1) = A065620(n). %F A348296 Product_{k = 1..A000120(n)} T(n, k) = A059867(n). %F A348296 T(2*n, k) = 2*T(n, k). %e A348296 Triangle T(n, k) begins: %e A348296 n n-th row %e A348296 -- ------------ %e A348296 1 [1] %e A348296 2 [2] %e A348296 3 [1, 2] %e A348296 4 [4] %e A348296 5 [1, 4] %e A348296 6 [2, 4] %e A348296 7 [1, 2, 4] %e A348296 8 [8] %e A348296 9 [1, 8] %e A348296 10 [2, 8] %e A348296 11 [1, 2, 8] %e A348296 12 [4, 8] %e A348296 13 [1, 4, 8] %e A348296 14 [2, 4, 8] %e A348296 15 [1, 2, 4, 8] %t A348296 Array[DeleteCases[Union@ NumberExpand[#, 2], 0] &, 32] // Flatten (* _Michael De Vlieger_, Jul 19 2022 *) %o A348296 (PARI) row(n) = { my (r=vector(hammingweight(n))); for (k=1, #r, n -= r[k] = 2^valuation(n, 2)); return (r) } %Y A348296 Cf. A000079, A000120, A006519, A053644, A059867, A065620, A133457. %K A348296 nonn,tabf,base,easy %O A348296 1,2 %A A348296 _Rémy Sigrist_, Jul 18 2022