This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A348313 #10 Nov 11 2021 21:06:57 %S A348313 5,11,13,71,73,97,149,223,229,283,337,353,401,409,577,827,887,1051, %T A348313 1277,1321,1489,1543,1627,1787,1931,2237,2467,2903,3137,3181,3559, %U A348313 3917,4243,4357,4363,4441,4583,4723,4933,5113,5693,5839,5857,6007,6043,6053,6121 %N A348313 Primes q such that q^3+r^5+s^7 is also prime, where q,r,s are consecutive primes. %C A348313 Exponent values (3,5,7) given by the prime triplet of the form p, p+2, p+4. %e A348313 5 is a term because 5^3+7^5+11^7 = 19504103 is prime; %e A348313 11 is a term because 11^3+13^5+17^7 = 410711297 is prime. %t A348313 Select[Partition[Select[Range[6000], PrimeQ], 3, 1], PrimeQ[#[[1]]^3 + #[[2]]^5 + #[[3]]^7] &][[;; , 1]] (* _Amiram Eldar_, Oct 11 2021 *) %o A348313 (Sage) %o A348313 def Q(x): %o A348313 if Primes().unrank(x)^3+Primes().unrank(x+1)^5+Primes().unrank(x+2)^7 in Primes(): %o A348313 return Primes().unrank(x) %o A348313 A348313 = [Q(x) for x in range(0,10^3) if Q(x)!=None] %o A348313 (PARI) isok(p) = if (isprime(p), my(q=nextprime(p+1), r=nextprime(q+1)); isprime(p^3+q^5+r^7)); \\ _Michel Marcus_, Oct 11 2021 %Y A348313 Cf. A000040, A348267. %K A348313 nonn %O A348313 1,1 %A A348313 _Dumitru Damian_, Oct 11 2021