This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A348320 #25 Oct 21 2021 01:34:52 %S A348320 16,25,27,32,36,49,64,81,125,128,216,243,256,512,625,729,1024,1089, %T A348320 1296,1936,2048,2187,2401,3025,3125,4096,4356,5929,6561,7744,7776, %U A348320 8192,9801,10648,15625,16384,16807,17161,19683,19881,22801,25921,29241,32761,32768,35937,36481,46656 %N A348320 Perfect powers m^k, k >= 2 of palindromes m when m^k is not a palindrome. %C A348320 Seems to be the "converse" of A348319. %C A348320 When m is prime, then we get the subsequence A339624. %C A348320 G. J. Simmons conjectured that there are no palindromes of form n^k for k >= 5 (and n > 1) (see Simmons link p. 98); according to this conjecture, every palindrome^k, k >= 5 is a term. %H A348320 Gustavus J. Simmons, <a href="/A002778/a002778_2.pdf">Palindromic Powers</a>, J. Rec. Math., Vol. 3, No. 2 (1970), pp. 93-98 [Annotated scanned copy]. %e A348320 216 = 6^3, 1936 = 44^2, 4096 = 8^4, 7776 = 6^5, 35937 = 33^3, 117649 = 7^6 are terms. %t A348320 seq[max_] := Module[{m = Floor@Sqrt[max], s = {}, n, p}, Do[If[! PalindromeQ[k], Continue[]]; n = Floor@Log[k, max]; Do[If[! PalindromeQ[(p = k^j)], AppendTo[s, p]], {j, 2, n}], {k, 2, m}]; Union[s]]; seq[50000] (* _Amiram Eldar_, Oct 12 2021 *) %o A348320 (Python) %o A348320 def ispal(n): s = str(n); return s == s[::-1] %o A348320 def aupto(limit): %o A348320 aset, m, mm = set(), 2, 4 %o A348320 while mm <= limit: %o A348320 if ispal(m): %o A348320 mk = mm %o A348320 while mk <= limit: %o A348320 if not ispal(mk): aset.add(mk) %o A348320 mk *= m %o A348320 mm += 2*m + 1 %o A348320 m += 1 %o A348320 return sorted(aset) %o A348320 print(aupto(47000)) # _Michael S. Branicky_, Oct 12 2021 %o A348320 (PARI) ispal(x) = my(d=digits(x)); d == Vecrev(d); %o A348320 isok(x) = my(q); ispower(x,,&q) && !ispal(x) && ispal(q); \\ _Michel Marcus_, Oct 14 2021 %Y A348320 Cf. A339624, A348319. %Y A348320 Subsequence of A001597. %K A348320 nonn,base %O A348320 1,1 %A A348320 _Bernard Schott_, Oct 12 2021