This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A348329 #24 Oct 12 2022 08:58:05 %S A348329 0,1,4,27,3125,823543,1647082,2238771 %N A348329 Numbers k such that k' = k'', where ' is the arithmetic derivative. %C A348329 For n > 2, a(n) is such that a(n)' = p^p for some prime p. So A051674 is a subsequence. - _David A. Corneth_, Oct 13 2021 %C A348329 If p > 2 and p^p-2 are both primes (i.e., p is an odd prime term of A100408), then 2*(p^p-2) is a term. Terms of this type are 1647082 and 3956839311320627178247954, corresponding to p = 7 and 19 respectively. - _Amiram Eldar_, Oct 13 2021 %F A348329 Numbers k such that A003415(k) = A068346(k). %p A348329 isA348329 := proc(n) %p A348329 local d ; %p A348329 d := A003415(n) ; %p A348329 if A003415(d) = d then %p A348329 true ; %p A348329 else %p A348329 false; %p A348329 end if; %p A348329 end proc: %p A348329 for n from 0 do %p A348329 if isA348329(n) then %p A348329 print(n) ; %p A348329 end if; %p A348329 end do: # _R. J. Mathar_, Oct 19 2021 %t A348329 d[0] = d[1] = 0; d[n_] := n * Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); Select[Range[0, 2.5*10^6], d[#] == d[d[#]] &] (* _Amiram Eldar_, Oct 13 2021 *) %o A348329 (PARI) ad(n) = vecsum([n/f[1]*f[2]|f<-factor(n+!n)~]); \\ A003415 %o A348329 isok(k) = ad(k) == ad(ad(k)); \\ _Michel Marcus_, Oct 18 2021 %o A348329 (Python) %o A348329 from sympy import factorint %o A348329 from itertools import count, islice %o A348329 def ad(n): return 0 if n<2 else sum(n*e//p for p, e in factorint(n).items()) %o A348329 def agen(): yield from (k for k in count(0) if (adk:=ad(k)) == ad(adk)) %o A348329 print(list(islice(agen(), 5))) # _Michael S. Branicky_, Oct 12 2022 %Y A348329 Cf. A003415, A051674, A068346, A100408. %K A348329 nonn,more %O A348329 1,3 %A A348329 _Wesley Ivan Hurt_, Oct 12 2021