A348332 a(n) = (2^n-1) * 2^(2^n-n).
2, 12, 224, 61440, 4160749568, 18158513697557839872, 337623910929368631717566993311207522304, 115339776388732929035197660848497720713218148788040405586178452820382218977280
Offset: 1
Examples
For n = 2, a(2) = (2^2-1) * 2^(2^2-2) = 3 * 4 = 12 = z; x = y = 2^(2^2-1) = 8 and 8^8 * 8^8 = (8+8)^12 = 281474976710656.
Links
- Art of Problem Solving, Kazakhstan National Olympiad 2015, Day 1, problem 2.
- Diophante, A499 - Bon souvenir d'Astana (in French).
- Index to sequences related to Olympiads.
Programs
-
Maple
Sequence = seq((2^n-1)*2^(2^n-n), n=1..8);
-
Mathematica
Table[(2^n - 1)*2^(2^n - n), {n, 1, 8}] (* Amiram Eldar, Oct 15 2021 *)
-
PARI
a(n) = (2^n-1)<<(2^n-n) \\ Charles R Greathouse IV, Oct 20 2021
-
Python
def A348332(n): return ((1<
Chai Wah Wu, Dec 12 2022
Formula
a(n) = 2 * A319511(n,n-1). - Kevin Ryde, Oct 13 2021
Comments