A348337 For n >= 1; x = n, then iterate x --> x + d(x) until d(x + d(x)) >= d(x). a(n) gives the number of iteration steps where d(i) is the number of divisors of i, A000005(i).
3, 2, 7, 1, 6, 5, 5, 4, 4, 4, 3, 3, 2, 3, 1, 1, 3, 2, 2, 1, 1, 3, 3, 1, 2, 2, 1, 1, 3, 1, 2, 1, 1, 3, 2, 1, 2, 2, 1, 2, 3, 1, 2, 3, 1, 3, 3, 1, 2, 2, 2, 1, 2, 1, 1, 1, 1, 3, 3, 6, 2, 2, 1, 1, 2, 1, 2, 1, 1, 2, 3, 5, 2, 2, 1, 1, 2, 1, 2, 2, 1, 3, 2, 4, 1, 2, 5, 4, 5, 1, 4, 4, 1, 4, 3, 3, 3, 3, 2, 1
Offset: 1
Keywords
Examples
n = 1; x(1) = 1 + d(1) = 2, d(1 + d(1)) >= d(1) thus x(2) = 2 + d(2) = 4, d(2 + d(2)) >= d(2) thus x(3) = 4 + d(4) = 7, d(4 + d(4)) < d(4), stop. a(1) = 3.
Programs
-
Mathematica
d[n_] := DivisorSigma[0, n]; x[n_] := n + d[n]; a[n_] := Length@ NestWhileList[x, n, d[#] <= d[x[#]] &]; Array[a, 100] (* Amiram Eldar, Oct 15 2021 *)
Comments