A361418 a(n) is the least number with exactly n noninfinitary divisors.
1, 4, 12, 16, 60, 36, 48, 256, 360, 4096, 180, 144, 240, 576, 768, 65536, 2520, 1048576, 12288, 900, 1260, 1296, 720, 2304, 1680, 9216, 2880, 5184, 3840, 147456, 196608, 36864, 27720, 46656, 3145728, 4398046511104, 61440, 3600, 6300, 18014398509481984, 10080, 20736
Offset: 0
Keywords
Examples
a(1) = 4 since 4 is the least number with exactly one noninfinitary divisor, 2.
Links
- Amiram Eldar, Table of n, a(n) for n = 0..50
Crossrefs
Programs
-
Mathematica
f[1] = 0; f[n_] := DivisorSigma[0, n] - Times @@ Flatten[2^DigitCount[#, 2, 1] & /@ FactorInteger[n][[;; , 2]]]; seq[len_, nmax_] := Module[{s = Table[0, {len}], c = 0, n = 1, i}, While[c < len && n < nmax, i = f[n] + 1; If[i <= len && s[[i]] == 0, c++; s[[i]] = n]; n++]; s]; seq[35, 10^7]
-
PARI
s(n) = {my(f = factor(n)); numdiv(f) - prod(i = 1, #f~, 2^hammingweight(f[i,2]));} lista(len, nmax) = {my(v = vector(len), c = 0, n = 1, i); while(c < len && n < nmax, i = s(n) + 1; if(i <= len && v[i] == 0, c++; v[i] = n); n++); v};
Comments