This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A348346 #12 Oct 15 2021 05:55:56 %S A348346 20150,52767,99296,835515,1241504,2199392,6294015,11158496,12770450, %T A348346 17016416,19127907,20128544,23686748,24790688,26580554,33366015, %U A348346 34385247,39687651,42106976,44157087,45466676,59825349,60832449,73780244,75268775,81654650,84696849,111457213 %N A348346 Numbers k such that k and k+1 have the same positive sum of noninfinitary divisors (A348271). %C A348346 Numbers k such that A348271(k) = A348271(k+1) > 0. %C A348346 The terms are restricted to have a positive sum of noninfinitary divisors, since there are many consecutive numbers without noninfinitary divisors (these are the terms of A036537). %H A348346 Amiram Eldar, <a href="/A348346/b348346.txt">Table of n, a(n) for n = 1..154</a> %e A348346 20150 is a term since A348271(20150) = A348271(20151) = 6720. %t A348346 f[p_, e_] := Module[{b = IntegerDigits[e, 2], m}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ f @@@ FactorInteger[n]; s[n_] := DivisorSigma[1,n] - isigma[n]; Select[Range[10^5], (s1 = s[#]) > 0 && s1 == s[# + 1] &] %Y A348346 Cf. A036537, A348271, A348345. %Y A348346 Subsequence of A162643. %Y A348346 Similar sequences: A002961, A064115, A064125, A293183, A306985. %K A348346 nonn %O A348346 1,1 %A A348346 _Amiram Eldar_, Oct 13 2021