This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A348352 #21 Dec 11 2021 02:11:40 %S A348352 2,3,5,7,13,233,433,27361,121553,30536929 %N A348352 Primes p where p-1 is in A328596 (reversed binary expansion is an aperiodic necklace) and the same count of numbers smaller than p-1 are found in A328596 as primes smaller than p exist. %C A348352 If this sequence is infinite, then the density of aperiodic necklaces (Lyndon words) in the reversed binary expansion of numbers and the density of prime numbers, may have some interesting connection. If there exists a deeper relation, an analogy of Goldbach's conjecture based on numbers in A328596 could be investigated, would that provide any new knowledge regarding prime numbers? %F A348352 A348268(a(n) - 1) = a(n). %F A348352 A348268(a(n)*2^m - 1) = a(n)*2^m. %F A348352 If A000040(m) = a(n) then A328596(m) = a(n) - 1; %o A348352 (MATLAB) %o A348352 function a = A348352(max_range) %o A348352 a = []; %o A348352 bits = floor(log2(max_range))+2; %o A348352 p = primes(max_range); %o A348352 lw = lyndonwords(1); %o A348352 lyndonw = lw{2}; %o A348352 for n = 2:bits %o A348352 lyndonw =[lyndonw lyndonwords(n)]; %o A348352 end %o A348352 for n = 1:length(p) %o A348352 prime = p(n); %o A348352 wraw = bitget(prime-1,1:bits); %o A348352 word = wraw(1:find(wraw == 1, 1, 'last' )); %o A348352 if length(lyndonw{n}) == length(word) %o A348352 if lyndonw{n} == word %o A348352 a = [a prime]; %o A348352 end %o A348352 end %o A348352 end %o A348352 end %o A348352 function words = lyndonwords(maxlen) %o A348352 words = cell(1); %o A348352 wordindex = 1; %o A348352 w = 0; %o A348352 while ~isempty(w) %o A348352 len = length(w); %o A348352 if(len == maxlen) %o A348352 s = []; %o A348352 for j = 1:length(w) %o A348352 s = [s w(j)]; %o A348352 end %o A348352 words{wordindex} = s; %o A348352 wordindex = wordindex + 1; %o A348352 else %o A348352 while length(w) < maxlen %o A348352 w = [w w(1+length(w)-len)]; %o A348352 end %o A348352 end %o A348352 while ~isempty(w) && w(end) == 1 %o A348352 w = w(1:end-1); %o A348352 end %o A348352 if ~isempty(w) %o A348352 w(end) = 1; %o A348352 end %o A348352 end %o A348352 end %Y A348352 Cf. A000040, A328596, A348268. %K A348352 nonn,more %O A348352 1,1 %A A348352 _Thomas Scheuerle_, Oct 14 2021