This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A348354 #12 Oct 18 2021 01:38:47 %S A348354 0,3,4,1,2,15,18,19,16,17,20,23,24,21,22,5,8,9,6,7,10,13,14,11,12,75, %T A348354 78,79,76,77,90,93,94,91,92,95,98,99,96,97,80,83,84,81,82,85,88,89,86, %U A348354 87,100,103,104,101,102,115,118,119,116,117,120,123,124,121 %N A348354 The base-5 expansion of a(n) is obtained by replacing 1's, 2's, 3's and 4's by 3's, 4's, 1's and 2's, respectively, in the base-5 expansion of n. %C A348354 This sequence is a self-inverse permutation of the nonnegative integers. %C A348354 It is possible to build a similar sequence for any fixed base b > 1 and any permutation p of {1, ..., b-1}. %C A348354 This sequence is interesting as it satisfies f(a(n)) = -f(n), where f(n) = (A316657(n), A316658(n)). %H A348354 Rémy Sigrist, <a href="/A348354/b348354.txt">Table of n, a(n) for n = 0..3124</a> %H A348354 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %F A348354 A316657(n) + A316657(a(n)) = 0. %F A348354 A316658(n) + A316658(a(n)) = 0. %e A348354 The first terms, in decimal and in base 5, are: %e A348354 n a(n) q(n) q(a(n)) %e A348354 -- ---- ---- ------- %e A348354 0 0 0 0 %e A348354 1 3 1 3 %e A348354 2 4 2 4 %e A348354 3 1 3 1 %e A348354 4 2 4 2 %e A348354 5 15 10 30 %e A348354 6 18 11 33 %e A348354 7 19 12 34 %e A348354 8 16 13 31 %e A348354 9 17 14 32 %e A348354 10 20 20 40 %t A348354 a[n_] := With[{d = {0, 3, 4, 1, 2}}, FromDigits[d[[IntegerDigits[n, 5] + 1]], 5]]; Array[a, 64, 0] (* _Amiram Eldar_, Oct 16 2021 *) %o A348354 (PARI) a(n, p=[3,4,1,2]) = fromdigits(apply(d -> if (d, p[d], 0), digits(n, #p+1)), #p+1) %Y A348354 See A004488, A048647 and A348355 for similar sequences. %Y A348354 Cf. A316657, A316658. %K A348354 nonn,base,easy %O A348354 0,2 %A A348354 _Rémy Sigrist_, Oct 14 2021