This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A348363 #17 Oct 18 2021 01:38:54 %S A348363 0,1,1,3,1,5,3,7,1,9,5,15,3,15,7,15,1,17,9,27,5,21,15,31,3,27,15,31,7, %T A348363 31,15,31,1,33,17,51,9,45,27,63,5,45,21,63,15,47,31,63,3,51,27,59,15, %U A348363 63,31,63,7,63,31,63,15,63,31,63,1,65,33,99,17,85,51 %N A348363 The 1's in the binary expansion of a(n) encode the distances between the 1's in the binary expansion of n. %C A348363 The bit 2^d is set in a(n) iff for some e >= 0, the bits 2^e and 2^(e+d) are set in n. %C A348363 This sequence has similarities with A067398; here we take the absolute differences, there the sums, of indices of 1's in binary expansions. %C A348363 All terms are odd, except a(0) = 0. %H A348363 Rémy Sigrist, <a href="/A348363/b348363.txt">Table of n, a(n) for n = 0..8192</a> %H A348363 Rémy Sigrist, <a href="/A348363/a348363.png">Colored scatterplot of the first 2^20 terms</a> (where the color is function of the 2-adic valuation of n, upper red pixels correspond to odd n's) %H A348363 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %F A348363 a(2*n) = a(n). %F A348363 a(n) = n iff n = 0 or n belongs to A064896. %F A348363 a(n) = 1 iff n is a power of 2 (A000079). %F A348363 a(n) = 3 iff n belongs to A007283. %F A348363 a(n) = 5 iff n belongs to A020714. %F A348363 a(n) AND n = n for any odd number n (where AND denotes the bitwise AND operator). %e A348363 The first terms, in decimal and in binary, are: %e A348363 n a(n) bin(n) bin(a(n)) %e A348363 -- ---- ------ --------- %e A348363 0 0 0 0 %e A348363 1 1 1 1 %e A348363 2 1 10 1 %e A348363 3 3 11 11 %e A348363 4 1 100 1 %e A348363 5 5 101 101 %e A348363 6 3 110 11 %e A348363 7 7 111 111 %e A348363 8 1 1000 1 %e A348363 9 9 1001 1001 %e A348363 10 5 1010 101 %e A348363 11 15 1011 1111 %e A348363 12 3 1100 11 %e A348363 13 15 1101 1111 %e A348363 14 7 1110 111 %e A348363 15 15 1111 1111 %t A348363 {0}~Join~Array[Total[2^Append[Union@ Abs[Subtract @@@ Permutations[1 + Length[#] - Position[#, 1][[All, 1]] &@ IntegerDigits[#, 2], {2}]], 0]] &, 70] (* _Michael De Vlieger_, Oct 16 2021 *) %o A348363 (PARI) a(n) = { my (b=vector(hammingweight(n))); for (k=1, #b, n-=2^b[k]=valuation(n, 2);); my (p=setbinop((i,j)->abs(i-j), b)); sum (k=1, #p, 2^p[k]) } %o A348363 (Python) %o A348363 def a(n): %o A348363 locs = [e for e in range(n.bit_length()) if 1 & (n>>e)] %o A348363 diffs = set(abs(e1-e2) for i, e1 in enumerate(locs) for e2 in locs[i:]) %o A348363 return sum(2**d for d in diffs) %o A348363 print([a(n) for n in range(71)]) # _Michael S. Branicky_, Oct 16 2021 %Y A348363 Cf. A000079, A007283, A020714, A064896, A067398. %K A348363 nonn,base %O A348363 0,4 %A A348363 _Rémy Sigrist_, Oct 15 2021