This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A348364 #43 Dec 15 2021 01:48:10 %S A348364 2,2,1,2,1,2,1,2,2,1,1,2,1,1,2,2,1,2,1,2,1,1,1,2,2,1,1,2,1,2,1,2,1,1, %T A348364 2,2,1,1,1,2,1,2,1,1,2,1,1,2,2,2,1,1,1,2,1,2,1,1,1,2,1,1,2,2,1,2,1,1, %U A348364 1,2,1,2,1,1,1,1,2,1,1,2,2,1,1,2,1,1,1,2,1,2,2,1,1,1,1,2,1,2,2,2,1,1,1,2,1 %N A348364 Number of vertices on the axis of symmetry of the symmetric representation of sigma(n). %C A348364 The values can be 1 or 2. %C A348364 If a(n) = 1 then the symmetric representation of sigma(n) has an even number of parts and n is a number that have no middle divisors (cf. A071561). %C A348364 If a(n) = 2 then the symmetric representation of sigma(n) has an odd number of parts and n is a number that have middle divisors (cf. A071562). The distance between both vertices divided by sqrt(2) equals the number of middle divisors of n (cf. A067742). %H A348364 Antti Karttunen, <a href="/A348364/b348364.txt">Table of n, a(n) for n = 1..16384</a> %F A348364 a(n) = 1 + A347950(n). %F A348364 a(n) = 2 - A348327(n). %e A348364 For n = 2, 6 and 10 the symmetric representation of sigma(n) respectively looks like this: %e A348364 . %e A348364 . _ _ _ %e A348364 . _| | | | | | %e A348364 . 2 |_ _| | | | | %e A348364 . _ _| | | | %e A348364 . | _| | | %e A348364 . _ _ _| _| _ _| | %e A348364 . 6 |_ _ _ _| | _ _| %e A348364 . _ _|_| %e A348364 . | _| %e A348364 . _ _ _ _ _| | %e A348364 . 10 |_ _ _ _ _ _| %e A348364 . %e A348364 For n = 2 there are two vertices on the axis of symmetry hence the symmetric representation of sigma(2) has an odd number of parts and 2 is a number that have middle divisors. The distance between both vertices divided by sqrt(2) equals the number of middle divisors of 2, that is A067742(2) = 1. %e A348364 For n = 6 there are two vertices on the axis of symmetry so the symmetric representation of sigma(6) has an odd number of parts and 6 is a number that have middle divisors. The distance between both vertices divided by sqrt(2) equals the number of middle divisors of 6, that is A067742(6) = 2. %e A348364 For n = 10 there is only one vertex on the axis of symmetry hence the symmetric representation of sigma(10) has an even number of parts and 10 is a number that have middle no divisors, so A067742(10) = 0. %t A348364 a[n_] := 1 + Boole[DivisorSum[n, 1 &, n/2 <= #^2 < 2*n &] > 0]; Array[a, 100] (* _Amiram Eldar_, Oct 17 2021 *) %o A348364 (PARI) %o A348364 A347950(n) = ((sumdiv(n, d, my(d2 = d^2); (n/2 < d2) && (d2 <= n<<1))) > 0); \\ From A347950 %o A348364 A348364(n) = (1+A347950(n)); \\ _Antti Karttunen_, Dec 13 2021 %Y A348364 Parity gives A348327. %Y A348364 Companion of A348406. %Y A348364 Cf. A067742, A071090, A071540, A071562, A071563, A196020, A235791, A236104, A237048, A237270, A237271, A237591, A237593, A240542, A281007, A299761, A303297, A340833, A346868, A347950. %K A348364 nonn %O A348364 1,1 %A A348364 _Omar E. Pol_, Oct 15 2021