cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348364 Number of vertices on the axis of symmetry of the symmetric representation of sigma(n).

This page as a plain text file.
%I A348364 #43 Dec 15 2021 01:48:10
%S A348364 2,2,1,2,1,2,1,2,2,1,1,2,1,1,2,2,1,2,1,2,1,1,1,2,2,1,1,2,1,2,1,2,1,1,
%T A348364 2,2,1,1,1,2,1,2,1,1,2,1,1,2,2,2,1,1,1,2,1,2,1,1,1,2,1,1,2,2,1,2,1,1,
%U A348364 1,2,1,2,1,1,1,1,2,1,1,2,2,1,1,2,1,1,1,2,1,2,2,1,1,1,1,2,1,2,2,2,1,1,1,2,1
%N A348364 Number of vertices on the axis of symmetry of the symmetric representation of sigma(n).
%C A348364 The values can be 1 or 2.
%C A348364 If a(n) = 1 then the symmetric representation of sigma(n) has an even number of parts and n is a number that have no middle divisors (cf. A071561).
%C A348364 If a(n) = 2 then the symmetric representation of sigma(n) has an odd number of parts and n is a number that have middle divisors (cf. A071562). The distance between both vertices divided by sqrt(2) equals the number of middle divisors of n (cf. A067742).
%H A348364 Antti Karttunen, <a href="/A348364/b348364.txt">Table of n, a(n) for n = 1..16384</a>
%F A348364 a(n) = 1 + A347950(n).
%F A348364 a(n) = 2 - A348327(n).
%e A348364 For n = 2, 6 and 10 the symmetric representation of sigma(n) respectively looks like this:
%e A348364 .
%e A348364 .           _       _       _
%e A348364 .         _| |     | |     | |
%e A348364 .    2   |_ _|     | |     | |
%e A348364 .               _ _| |     | |
%e A348364 .              |    _|     | |
%e A348364 .         _ _ _|  _|    _ _| |
%e A348364 .    6   |_ _ _ _|     |  _ _|
%e A348364 .                   _ _|_|
%e A348364 .                  |  _|
%e A348364 .         _ _ _ _ _| |
%e A348364 .   10   |_ _ _ _ _ _|
%e A348364 .
%e A348364 For n = 2 there are two vertices on the axis of symmetry hence the symmetric representation of sigma(2) has an odd number of parts and 2 is a number that have middle divisors. The distance between both vertices divided by sqrt(2) equals the number of middle divisors of 2, that is A067742(2) = 1.
%e A348364 For n = 6 there are two vertices on the axis of symmetry so the symmetric representation of sigma(6) has an odd number of parts and 6 is a number that have middle divisors. The distance between both vertices divided by sqrt(2) equals the number of middle divisors of 6, that is A067742(6) = 2.
%e A348364 For n = 10 there is only one vertex on the axis of symmetry hence the symmetric representation of sigma(10) has an even number of parts and 10 is a number that have middle no divisors, so A067742(10) = 0.
%t A348364 a[n_] := 1 + Boole[DivisorSum[n, 1 &, n/2 <= #^2 < 2*n &] > 0]; Array[a, 100] (* _Amiram Eldar_, Oct 17 2021 *)
%o A348364 (PARI)
%o A348364 A347950(n) = ((sumdiv(n, d, my(d2 = d^2); (n/2 < d2) && (d2 <= n<<1))) > 0); \\ From A347950
%o A348364 A348364(n) = (1+A347950(n)); \\ _Antti Karttunen_, Dec 13 2021
%Y A348364 Parity gives A348327.
%Y A348364 Companion of A348406.
%Y A348364 Cf. A067742, A071090, A071540, A071562, A071563, A196020, A235791, A236104, A237048, A237270, A237271, A237591, A237593, A240542, A281007, A299761, A303297, A340833, A346868, A347950.
%K A348364 nonn
%O A348364 1,1
%A A348364 _Omar E. Pol_, Oct 15 2021