A348372 Decimal expansion of Sum_{k>=2} H(k)*H(k+1)/(k^3-k), where H(k) = A001008(k)/A002805(k) is the k-th harmonic number.
8, 8, 6, 7, 0, 9, 5, 8, 0, 1, 2, 8, 3, 4, 9, 1, 0, 5, 4, 8, 2, 1, 5, 8, 0, 4, 6, 8, 2, 7, 0, 4, 3, 7, 1, 1, 9, 3, 0, 2, 7, 6, 2, 3, 2, 3, 5, 7, 8, 0, 1, 5, 0, 8, 7, 7, 3, 8, 3, 8, 8, 8, 7, 3, 1, 5, 6, 5, 9, 9, 2, 6, 6, 1, 2, 8, 8, 6, 6, 9, 1, 3, 5, 5, 1, 3, 6, 9, 0, 1, 2, 3, 5, 7, 2, 5, 0, 6, 5, 5, 2, 7, 7, 9, 9
Offset: 0
Examples
0.88670958012834910548215804682704371193027623235780...
Links
- Ovidiu Furdui and Alina Sȋntămărian, Problem 12060, The American Mathematical Monthly, Vol. 125, No. 7 (2018), p. 661; Summation by Parts and an Euler Sum, Solution to Problem 12060 by Omran Kouba, ibid., Vol. 127, No. 3 (2020), pp. 274-282.
Programs
-
Mathematica
RealDigits[5/2 - Pi^2/24 - Zeta[3], 10, 100][[1]]
Formula
Equals 5/2 - Pi^2/24 - zeta(3).