A348373 Decimal expansion of Sum_{k>=1} H(k)^2/2^k, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number.
2, 1, 2, 5, 3, 8, 7, 0, 8, 0, 7, 6, 6, 4, 2, 7, 8, 6, 1, 1, 3, 9, 5, 1, 7, 6, 9, 2, 9, 7, 2, 6, 9, 0, 1, 6, 0, 9, 4, 9, 5, 0, 2, 8, 5, 2, 8, 0, 1, 3, 4, 4, 0, 2, 4, 6, 0, 2, 4, 2, 2, 3, 6, 2, 9, 9, 3, 6, 7, 2, 8, 5, 2, 6, 6, 3, 0, 3, 5, 3, 4, 6, 0, 3, 3, 5, 7, 7, 1, 6, 4, 0, 6, 3, 6, 8, 5, 6, 9, 6, 2, 3, 6, 7, 1
Offset: 1
Examples
2.12538708076642786113951769297269016094950285280134...
Links
- István Mező, A q-Raabe formula and an integral of the fourth Jacobi theta function, Journal of Number Theory, Vol. 133, No. 2 (2013), pp. 692-704.
- Seán Mark Stewart, Explicit evaluation of some quadratic Euler-type sums containing double-index harmonic numbers, Tatra Mountains Mathematical Publications, Vol. 77, No. 1 (2020), pp. 73-98.
Crossrefs
Programs
-
Mathematica
RealDigits[Pi^2/6 + Log[2]^2, 10, 100][[1]]