A348380 Number of factorizations of n without an alternating permutation. Includes all twins (x*x).
0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0
Offset: 1
Keywords
Examples
The a(n) factorizations for n = 96, 144, 192, 384: (2*2*2*12) (12*12) (3*4*4*4) (4*4*4*6) (2*2*2*2*6) (2*2*2*18) (2*2*2*24) (2*2*2*48) (2*2*2*2*2*3) (2*2*2*2*9) (2*2*2*2*12) (2*2*2*2*24) (2*2*2*2*3*3) (2*2*2*2*2*6) (2*2*2*2*3*8) (2*2*2*2*3*4) (2*2*2*2*4*6) (2*2*2*2*2*2*3) (2*2*2*2*2*12) (2*2*2*2*2*2*6) (2*2*2*2*2*3*4) (2*2*2*2*2*2*2*3)
Links
- Wikipedia, Alternating permutation
Crossrefs
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]==Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1]; Table[Length[Select[facs[n],Select[Permutations[#],wigQ]=={}&]],{n,100}]
Formula
a(2^n) = A345165(n).
Comments