This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A348381 #7 Nov 03 2021 09:08:04 %S A348381 0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,2,0,0, %T A348381 0,0,0,0,0,1,0,0,0,0,0,0,0,2,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,4,0,0,0,0, %U A348381 0,0,0,1,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0 %N A348381 Number of inseparable factorizations of n that are not a twin (x*x). %C A348381 First differs from A347706 at a(216) = 3, A347706(216) = 4. %C A348381 A factorization of n is a weakly increasing sequence of positive integers > 1 with product n. %C A348381 A multiset is inseparable if it has no permutation that is an anti-run, meaning there are always adjacent equal parts. Alternatively, a multiset is inseparable if its maximal multiplicity is at most one plus the sum of its remaining multiplicities. %F A348381 a(n > 1) = A333487(n) - A010052(n). %F A348381 a(2^n) = A325535(n) - 1 for odd n, otherwise A325535(n). %e A348381 The a(n) factorizations for n = 96, 192, 384, 576: %e A348381 2*2*2*12 3*4*4*4 4*4*4*6 4*4*4*9 %e A348381 2*2*2*2*6 2*2*2*24 2*2*2*48 2*2*2*72 %e A348381 2*2*2*2*2*3 2*2*2*2*12 2*2*2*2*24 2*2*2*2*36 %e A348381 2*2*2*2*2*6 2*2*2*2*3*8 2*2*2*2*4*9 %e A348381 2*2*2*2*3*4 2*2*2*2*4*6 2*2*2*2*6*6 %e A348381 2*2*2*2*2*2*3 2*2*2*2*2*12 2*2*2*2*2*18 %e A348381 2*2*2*2*2*2*6 2*2*2*2*3*12 %e A348381 2*2*2*2*2*3*4 2*2*2*2*2*2*9 %e A348381 2*2*2*2*2*2*2*3 2*2*2*2*2*3*6 %e A348381 2*2*2*2*2*2*3*3 %t A348381 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; %t A348381 Table[Length[Select[facs[n],!MatchQ[#,{x_,x_}]&&Select[Permutations[#],!MatchQ[#,{___,x_,x_,___}]&]=={}&]],{n,100}] %Y A348381 Positions of nonzero terms are A046099. %Y A348381 Partitions not of this type are counted by A325534 - A000035. %Y A348381 Partitions of this type are counted by A325535 - A000035. %Y A348381 Allowing twins gives A333487. %Y A348381 The case without an alternating permutation is A347706, with twins A348380. %Y A348381 The complement is counted by A348383, without twins A335434. %Y A348381 A001055 counts factorizations, strict A045778, ordered A074206. %Y A348381 A001250 counts alternating permutations of sets. %Y A348381 A008480 counts permutations of prime indices, strict A335489. %Y A348381 A025047 counts alternating or wiggly compositions. %Y A348381 A335452 counts anti-run permutations of prime indices, complement A336107. %Y A348381 A339846 counts even-length factorizations. %Y A348381 A339890 counts odd-length factorizations. %Y A348381 A344654 counts non-twin partitions without an alternating permutation. %Y A348381 A348382 counts non-anti-run compositions that are not a twin. %Y A348381 A348611 counts anti-run ordered factorizations. %Y A348381 Cf. A038548, A336102, A344614, A344653, A344740, A347050, A347437, A347438, A347456, A348379, A348609. %K A348381 nonn %O A348381 1,32 %A A348381 _Gus Wiseman_, Oct 30 2021