This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A348383 #8 Nov 03 2021 09:08:16 %S A348383 1,1,1,2,1,2,1,2,2,2,1,4,1,2,2,4,1,4,1,4,2,2,1,6,2,2,2,4,1,5,1,5,2,2, %T A348383 2,9,1,2,2,6,1,5,1,4,4,2,1,10,2,4,2,4,1,6,2,6,2,2,1,11,1,2,4,7,2,5,1, %U A348383 4,2,5,1,15,1,2,4,4,2,5,1,10,4,2,1,11,2 %N A348383 Number of factorizations of n that are either separable (have an anti-run permutation) or are a twin (x*x). %C A348383 First differs from A347050 at a(216) = 28, A347050(216) = 27. %C A348383 A factorization of n is a weakly increasing sequence of positive integers > 1 with product n. %C A348383 A multiset is separable if it has a permutation that is an anti-run, meaning there are no adjacent equal parts. Alternatively, a multiset is separable if its greatest multiplicity is greater than the sum of the remaining multiplicities plus one. %F A348383 a(n > 1) = A335434(n) + A010052(n), where A010052(n) = 1 if n is a perfect square, otherwise 0. %e A348383 The a(216) = 28 factorizations: %e A348383 (2*2*2*3*3*3) (2*2*2*3*9) (2*2*6*9) (3*8*9) (3*72) (216) %e A348383 (2*2*3*3*6) (2*3*4*9) (4*6*9) (4*54) %e A348383 (2*3*3*3*4) (2*3*6*6) (2*2*54) (6*36) %e A348383 (3*3*4*6) (2*3*36) (8*27) %e A348383 (2*2*3*18) (2*4*27) (9*24) %e A348383 (2*3*3*12) (2*6*18) (12*18) %e A348383 (2*9*12) (2*108) %e A348383 (3*3*24) %e A348383 (3*4*18) %e A348383 (3*6*12) %e A348383 The a(270) = 20 factorizations: %e A348383 (2*3*3*3*5) (2*3*5*9) (5*6*9) (3*90) (270) %e A348383 (3*3*5*6) (2*3*45) (5*54) %e A348383 (2*3*3*15) (2*5*27) (6*45) %e A348383 (2*9*15) (9*30) %e A348383 (3*3*30) (10*27) %e A348383 (3*5*18) (15*18) %e A348383 (3*6*15) (2*135) %e A348383 (3*9*10) %t A348383 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; %t A348383 sepQ[m_]:=Select[Permutations[m],!MatchQ[#,{___,x_,x_,___}]&]!={}; %t A348383 Table[Length[Select[facs[n],MatchQ[#,{x_,x_}]||sepQ[#]&]],{n,100}] %Y A348383 Positions of 1's are 1 and A000040. %Y A348383 Not requiring separability gives A010052 for n > 1. %Y A348383 Positions of 2's are A323644. %Y A348383 Partitions of this type are counted by A325534(n) + A000035(n + 1). %Y A348383 Partitions of this type are ranked by A335433 \/ A001248. %Y A348383 Partitions not of this type are counted by A325535(n) - A000035(n + 1). %Y A348383 Partitions not of this type are ranked by A345193 = A335448 \ A001248. %Y A348383 Not allowing twins gives A335434, complement A333487, %Y A348383 The case with an alternating permutation is A347050, no twins A348379. %Y A348383 The case without an alternating permutation is A347706, no twins A348380. %Y A348383 The complement is counted by A348381. %Y A348383 A001055 counts factorizations, strict A045778, ordered A074206. %Y A348383 A001250 counts alternating permutations. %Y A348383 A003242 counts anti-run compositions, ranked by A333489. %Y A348383 A025047 counts alternating or wiggly compositions. %Y A348383 A335452 counts anti-run permutations of prime indices, complement A336107. %Y A348383 A339846 counts even-length factorizations. %Y A348383 A339890 counts odd-length factorizations. %Y A348383 Cf. A119620, A138364, A336103, A344654, A344740, A347437, A347438, A347456, A347458, A348382. %K A348383 nonn %O A348383 1,4 %A A348383 _Gus Wiseman_, Oct 30 2021