This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A348384 #12 Dec 17 2021 20:29:03 %S A348384 1,6,36,40,216,224,240,1296,1344,1408,1440,1600,6656,7776,8064,8448, %T A348384 8640,8960,9600,34816,39936,46656,48384,50176,50688,51840,53760,56320, %U A348384 57600,64000,155648,208896,239616,266240,279936,290304,301056,304128,311040,315392 %N A348384 Heinz numbers of integer partitions whose length is 2/3 their sum. %C A348384 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are numbers whose sum of prime indices is 3/2 their number. Counting the partitions with these Heinz numbers gives A035377(n) = A000041(n/3) if n is a multiple of 3, otherwise 0. %H A348384 David A. Corneth, <a href="/A348384/b348384.txt">Table of n, a(n) for n = 1..10000</a> %F A348384 The sequence contains n iff A056239(n) = 3*A001222(n)/2. Here, A056239 adds up prime indices, while A001222 counts them with multiplicity. %F A348384 Intersection of A028260 and A347452. %e A348384 The terms and their prime indices begin: %e A348384 1: {} %e A348384 6: {1,2} %e A348384 36: {1,1,2,2} %e A348384 40: {1,1,1,3} %e A348384 216: {1,1,1,2,2,2} %e A348384 224: {1,1,1,1,1,4} %e A348384 240: {1,1,1,1,2,3} %e A348384 1296: {1,1,1,1,2,2,2,2} %e A348384 1344: {1,1,1,1,1,1,2,4} %e A348384 1408: {1,1,1,1,1,1,1,5} %e A348384 1440: {1,1,1,1,1,2,2,3} %e A348384 1600: {1,1,1,1,1,1,3,3} %e A348384 6656: {1,1,1,1,1,1,1,1,1,6} %e A348384 7776: {1,1,1,1,1,2,2,2,2,2} %t A348384 Select[Range[1000],2*Total[Cases[FactorInteger[#],{p_,k_}:>k*PrimePi[p]]]==3*PrimeOmega[#]&] %o A348384 (PARI) %o A348384 A056239(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i, 2] * primepi(f[i, 1]))); } %o A348384 isA348384(n) = (A056239(n)==(3/2)*bigomega(n)); \\ _Antti Karttunen_, Nov 22 2021 %Y A348384 These partitions are counted by A035377. %Y A348384 Rounding down gives A348550 or A347452, counted by A108711 or A119620. %Y A348384 A000041 counts integer partitions. %Y A348384 A001222 counts prime factors with multiplicity. %Y A348384 A056239 adds up prime indices, row sums of A112798. %Y A348384 A316524 gives the alternating sum of prime indices (reverse: A344616). %Y A348384 A344606 counts alternating permutations of prime factors. %Y A348384 Cf. A000070, A000097, A028260, A028982, A032766, A236914, A316413, A347457, A348551. %K A348384 nonn %O A348384 1,2 %A A348384 _Gus Wiseman_, Nov 13 2021