This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A348388 #24 Nov 06 2021 11:08:05 %S A348388 1,2,3,1,4,1,5,2,1,6,2,1,7,3,1,1,8,3,2,1,9,4,2,1,1,10,4,2,1,1,11,5,3, %T A348388 2,1,1,12,5,3,2,1,1,13,6,3,2,1,1,1,14,6,4,2,2,1,1,15,7,4,3,2,1,1,1,16, %U A348388 7,4,3,2,1,1,1,17,8,5,3,2,2,1,1,1,18,8,5,3,2,2,1,1,1,19,9,5,4,3,2,1,1,1,1 %N A348388 Irregular triangle read by rows: T(n, k) = floor((n-k)/k), for k = 1, 2, ..., floor(n/2) and n >= 2. %C A348388 This irregular triangle T(n, k) gives the number of multiples of number k, larger than k and not exceeding n, for k = 1, 2, ..., floor(n/2), for n >= 2. See A348389 for the array of these multiples. %C A348388 The length of row n is floor(n/2) = A004526(n), for n >= 2. %C A348388 The row sums give A002541(n). See the formula given there by _Wesley Ivan Hurt_, May 08 2016. %C A348388 The columns give the k-fold repeated positive integers k, for k >= 1. %H A348388 Karl-Heinz Hofmann, <a href="/A348388/b348388.txt">Table of n, a(n) for n = 2..10101</a> %F A348388 T(n, k) = floor((n-k)/k), for k = 1, 2, ..., floor(n/2) and n >= 2. %F A348388 G.f. of column k: G(k, x) = x^(2*k)/((1 - x)*(1 - x^k)). %e A348388 The irregular triangle T(n, k) begins: %e A348388 n\k 1 2 3 4 5 6 7 8 9 10 ... %e A348388 ------------------------------ %e A348388 2: 1 %e A348388 3: 2 %e A348388 4: 3 1 %e A348388 5: 4 1 %e A348388 6: 5 2 1 %e A348388 7: 6 2 1 %e A348388 8: 7 3 1 1 %e A348388 9: 8 3 2 1 %e A348388 10: 9 4 2 1 1 %e A348388 11: 10 4 2 1 1 %e A348388 12: 11 5 3 2 1 1 %e A348388 13: 12 5 3 2 1 1 %e A348388 14: 13 6 3 2 1 1 1 %e A348388 15: 14 6 4 2 2 1 1 %e A348388 16: 15 7 4 3 2 1 1 1 %e A348388 17: 16 7 4 3 2 1 1 1 %e A348388 18: 17 8 5 3 2 2 1 1 1 %e A348388 19: 18 8 5 3 2 2 1 1 1 %e A348388 20: 19 9 5 4 3 2 1 1 1 1 %e A348388 ... %t A348388 T[n_, k_] := Floor[(n - k)/k]; Table[T[n, k], {n, 2, 20}, {k, 1, Floor[n/2]}] // Flatten (* _Amiram Eldar_, Nov 02 2021 *) %o A348388 (Python) %o A348388 def A348388row(n): return [(n - k) // k for k in range(1, 1 + n // 2)] %o A348388 for n in range(2, 21): print(A348388row(n)) # _Peter Luschny_, Nov 05 2021 %Y A348388 Columns k (with varying offsets): A000027, A004526, A008620, A008621, A002266, A097992, ... %Y A348388 Cf. A002541, A004526, A010766, A348389. %K A348388 nonn,easy,tabf %O A348388 2,2 %A A348388 _Wolfdieter Lang_, Oct 31 2021