This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A348389 #10 Dec 13 2021 17:06:10 %S A348389 2,2,3,2,3,4,4,2,3,4,5,4,2,3,4,5,6,4,6,6,2,3,4,5,6,7,4,6,6,2,3,4,5,6, %T A348389 7,8,4,6,8,6,8,2,3,4,5,6,7,8,9,4,6,8,6,9,8,2,3,4,5,6,7,8,9,10,4,6,8, %U A348389 10,6,9,8,10,2,3,4,5,6,7,8,9,10,11,4,6,8,10,6,9,8,10,2,3,4,5,6,7,8,9,10,11,12,4,6,8,10,12,6,9,12,8,12,10,12 %N A348389 Irregular triangle read by rows: row n gives for n >= 2 a concatenation of the finite sequences of the multiples of k, larger than k and not exceeding n, for k = 1, 2, ..., floor(n/2). %C A348389 The length of row n is A002541(n). %C A348389 The sum of row n is A348392(n). %C A348389 The lengths of the sublists for these multiples of k in row n are given by T(n, k) = A348388(n, k), for n >= 2 and k = 1, 2, ..., floor(n/2). %F A348389 The entries a(n, m) of row n, for n > = 2 and m = 1, 2, ..., A002541(n), are given by the concatenation of the sequences k*(2, 3, ..., t(n,k)) for k = 1, 2, ..., floor(n/2), with t(n, k) = floor((n-k)/k) + 1. %e A348389 The irregular triangle a(n, m) begins: (the k-sublists are separated by a vertical bar) %e A348389 n\m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 ... %e A348389 ------------------------------------------------------------------------- %e A348389 2: 2 %e A348389 3: 2 3 %e A348389 4: 2 3 4|4 %e A348389 5: 2 3 4 5|4 %e A348389 6: 2 3 4 5 6|4 6|6 %e A348389 7: 2 3 4 5 6 7|4 6| 6 %e A348389 8: 2 3 4 5 6 7 8|4 6 8| 6| 8 %e A348389 9: 2 3 4 5 6 7 8 9| 4 6 8| 6 9| 8 %e A348389 10: 2 3 4 5 6 7 8 9 10| 4 6 8 10| 6 9| 8|10 %e A348389 11: 2 3 4 5 6 7 8 9 10 11| 4 6 8 10| 6 9| 8|10 %e A348389 12: 2 3 4 5 6 7 8 9 10 11 12| 4 6 8 10 12| 6 9 12| 8 12|10|12 %e A348389 13: 2 3 4 5 6 7 8 9 10 11 12 13| 4 6 8 10 12| 6 9 12| 8 12|10|12 %e A348389 ... %t A348389 nrows=10;Table[Flatten[Table[Range[2k,n,k],{k,Floor[n/2]}]],{n,2,nrows+1}] (* _Paolo Xausa_, Nov 23 2021 *) %Y A348389 Cf. A002541, A348388, A348392. %K A348389 nonn,easy,tabf %O A348389 2,1 %A A348389 _Wolfdieter Lang_, Oct 31 2021