This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A348400 #75 Oct 26 2021 16:56:34 %S A348400 1,2,4,7,11,16,22,29,37,10,20,31,43,56,70,85,13,30,3,22,42,6,28,51,75, %T A348400 12,38,65,93,122,5,36,9,42,76,111,147,184,222,261,301,342,384,15,59, %U A348400 14,60,107,8,57,107,158,210,263,317,372,428,485,17,76,136,197,259 %N A348400 a(1) = 1; a(n+1) = a(n) + n if the digit sum of a(n) is already in the sequence, otherwise a(n+1) = digitsum(a(n)). %C A348400 Do all the positive integers appear in this sequence? %C A348400 With 10^6 terms, 87, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 108, 109, 110, 112 are the smallest numbers that still are not in the sequence. %H A348400 Rémy Sigrist, <a href="/A348400/b348400.txt">Table of n, a(n) for n = 1..10000</a> %H A348400 Rémy Sigrist, <a href="/A348400/a348400.gp.txt">PARI program for A348400</a> %e A348400 a(8) = 29 and digitsum(29) = 11 is already in the sequence, so a(9) = a(8) + 8 = 29 + 8 = 37. %e A348400 a(9) = 37 and digitsum(37) = 3 + 7 = 10 is not yet in the sequence, so a(10) = 10. %e A348400 Written as an irregular triangle, in which each line begins with a term which is the digit sum of its preceding term, the sequence begins: %e A348400 1, 2, 4, 7, 11, 16, 22, 29, 37; %e A348400 10, 20, 31, 43, 56, 70, 85; %e A348400 13, 30; %e A348400 3, 22, 42; %e A348400 6, 28, 51, 75; %e A348400 12, 38, 65, 93, 122; %e A348400 5, 36; %e A348400 9, 42, 76, 111, 147, 184, 222, 261, 301, 342, 384; %e A348400 15, 59; %e A348400 14, 60, 107; %e A348400 ... %t A348400 seq[len_] := Module[{s = {1}, k, d, i = 1}, While[Length[s] < len, k = s[[-1]]; If[MemberQ[s, (d = Plus @@ IntegerDigits[k])], AppendTo[s, k + i], AppendTo[s, d]]; i++]; s]; seq[50] (* _Amiram Eldar_, Oct 21 2021 *) %o A348400 (PARI) See Links section. %Y A348400 Cf. A007953, A348483, A348433. %K A348400 nonn,base %O A348400 1,2 %A A348400 _Rodolfo Kurchan_, Oct 21 2021 %E A348400 Definition clarified by _Amiram Eldar_, Oct 23 2021