cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348406 Number of vertices on the axis of symmetry of the symmetric representation of sigma(n) with subparts.

This page as a plain text file.
%I A348406 #21 Dec 14 2021 10:06:31
%S A348406 2,2,1,2,1,3,1,2,2,1,1,3,1,1,3,2,1,2,1,3,1,1,1,3,2,1,1,3,1,3,1,2,1,1,
%T A348406 3,2,1,1,1,3,1,3,1,1,3,1,1,3,2,2,1,1,1,3,1,3,1,1,1,3,1,1,3,2,1,3,1,1,
%U A348406 1,3,1,4,1,1,1,1,3,1,1,3,2,1,1,3,1,1,1,3,1,3,3,1,1,1,1,3,1,2,3,2,1,1,1,3,1
%N A348406 Number of vertices on the axis of symmetry of the symmetric representation of sigma(n) with subparts.
%C A348406 The number of middle divisors of n is equal to a(n) - 1.
%C A348406 For the definition of "subparts" see A279387.
%H A348406 Antti Karttunen, <a href="/A348406/b348406.txt">Table of n, a(n) for n = 1..65537</a>
%F A348406 a(n) = 1 + A067742(n).
%e A348406 For n = 2, 6 and 10 the symmetric representation of sigma(n) with subparts respectively looks like this:
%e A348406 .
%e A348406 .           _       _       _
%e A348406 .         _| |     | |     | |
%e A348406 .    2   |_ _|     | |     | |
%e A348406 .               _ _| |     | |
%e A348406 .              |  _ _|     | |
%e A348406 .         _ _ _| |_|    _ _| |
%e A348406 .    6   |_ _ _ _|     |  _ _|
%e A348406 .                   _ _|_|
%e A348406 .                  |  _|
%e A348406 .         _ _ _ _ _| |
%e A348406 .   10   |_ _ _ _ _ _|
%e A348406 .
%e A348406 For n = 2 there are two vertices on the axis of symmetry hence the number of middle divisors of 2 is equal to 2 - 1 = 1.
%e A348406 For n = 6 there are three vertices on the axis of symmetry hence the number of middle divisors of 6 is equal to 3 - 1 = 2.
%e A348406 For n = 10 there is only one vertex on the axis of symmetry hence the number of middle divisors of 10 is equal to 1 - 1 = 0.
%t A348406 a[n_] := 1 + DivisorSum[n, 1 &, n/2 <= #^2 < 2*n &]; Array[a, 100] (* _Amiram Eldar_, Oct 17 2021 *)
%o A348406 (PARI)
%o A348406 A067742(n) = sumdiv(n, d, my(d2 = d^2); n / 2 < d2 && d2 <= n << 1); \\ From A067742
%o A348406 A348406(n) = (1 + A067742(n));
%Y A348406 Companion of A348364.
%Y A348406 Cf. A067742, A071090, A071540, A071562, A071563, A196020, A235791, A236104, A237048, A237270, A237271, A237591, A237593, A240542, A279387, A281007, A299761, A303297, A340833, A340847, A346868, A347950, A348327.
%K A348406 nonn
%O A348406 1,1
%A A348406 _Omar E. Pol_, Oct 17 2021