This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A348406 #21 Dec 14 2021 10:06:31 %S A348406 2,2,1,2,1,3,1,2,2,1,1,3,1,1,3,2,1,2,1,3,1,1,1,3,2,1,1,3,1,3,1,2,1,1, %T A348406 3,2,1,1,1,3,1,3,1,1,3,1,1,3,2,2,1,1,1,3,1,3,1,1,1,3,1,1,3,2,1,3,1,1, %U A348406 1,3,1,4,1,1,1,1,3,1,1,3,2,1,1,3,1,1,1,3,1,3,3,1,1,1,1,3,1,2,3,2,1,1,1,3,1 %N A348406 Number of vertices on the axis of symmetry of the symmetric representation of sigma(n) with subparts. %C A348406 The number of middle divisors of n is equal to a(n) - 1. %C A348406 For the definition of "subparts" see A279387. %H A348406 Antti Karttunen, <a href="/A348406/b348406.txt">Table of n, a(n) for n = 1..65537</a> %F A348406 a(n) = 1 + A067742(n). %e A348406 For n = 2, 6 and 10 the symmetric representation of sigma(n) with subparts respectively looks like this: %e A348406 . %e A348406 . _ _ _ %e A348406 . _| | | | | | %e A348406 . 2 |_ _| | | | | %e A348406 . _ _| | | | %e A348406 . | _ _| | | %e A348406 . _ _ _| |_| _ _| | %e A348406 . 6 |_ _ _ _| | _ _| %e A348406 . _ _|_| %e A348406 . | _| %e A348406 . _ _ _ _ _| | %e A348406 . 10 |_ _ _ _ _ _| %e A348406 . %e A348406 For n = 2 there are two vertices on the axis of symmetry hence the number of middle divisors of 2 is equal to 2 - 1 = 1. %e A348406 For n = 6 there are three vertices on the axis of symmetry hence the number of middle divisors of 6 is equal to 3 - 1 = 2. %e A348406 For n = 10 there is only one vertex on the axis of symmetry hence the number of middle divisors of 10 is equal to 1 - 1 = 0. %t A348406 a[n_] := 1 + DivisorSum[n, 1 &, n/2 <= #^2 < 2*n &]; Array[a, 100] (* _Amiram Eldar_, Oct 17 2021 *) %o A348406 (PARI) %o A348406 A067742(n) = sumdiv(n, d, my(d2 = d^2); n / 2 < d2 && d2 <= n << 1); \\ From A067742 %o A348406 A348406(n) = (1 + A067742(n)); %Y A348406 Companion of A348364. %Y A348406 Cf. A067742, A071090, A071540, A071562, A071563, A196020, A235791, A236104, A237048, A237270, A237271, A237591, A237593, A240542, A279387, A281007, A299761, A303297, A340833, A340847, A346868, A347950, A348327. %K A348406 nonn %O A348406 1,1 %A A348406 _Omar E. Pol_, Oct 17 2021