This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A348419 #27 Feb 16 2025 08:34:02 %S A348419 1,4,12,9,192,180,16,1200,6480,2800,25,4800,79380,179200,44100,36, %T A348419 14700,564480,3628800,4410000,698544,49,37632,2857680,40320000, %U A348419 133402500,100590336,11099088,64,84672,11430720,304920000,2134440000,4249941696,2175421248,176679360 %N A348419 Triangular table read by rows: T(n,k) is the k-th entry of the main diagonal of the inverse Hilbert matrix of order n. %H A348419 Jianing Song, <a href="/A348419/b348419.txt">Table of n, a(n) for n = 1..5050</a> (first 100 rows) %H A348419 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HilbertMatrix.html">Hilbert Matrix</a> %e A348419 The inverse Hilbert matrix of order 4 is given by %e A348419 [ 16 -120 240 -140] %e A348419 [-120 1200 -2700 1680] %e A348419 [ 240 -2700 6480 -4200] %e A348419 [-140 1680 -4200 2800]. %e A348419 Hence the 4th row is 16, 1200, 6480, 2800. %e A348419 The first 8 rows of the table are: %e A348419 1, %e A348419 4, 12, %e A348419 9, 192, 180, %e A348419 16, 1200, 6480, 2800, %e A348419 25, 4800, 79380, 179200, 44100, %e A348419 36, 14700, 564480, 3628800, 4410000, 698544, %e A348419 49, 37632, 2857680, 40320000, 133402500, 100590336, 11099088, %e A348419 64, 84672, 11430720, 304920000, 2134440000, 4249941696, 2175421248, 176679360, %e A348419 ... %p A348419 T:= n-> (M-> seq(M[i, i], i=1..n))(1/LinearAlgebra[HilbertMatrix](n)): %p A348419 seq(T(n), n=1..8); # _Alois P. Heinz_, Jun 19 2022 %t A348419 T[n_, k_] := Inverse[HilbertMatrix[n]][[k, k]]; Table[T[n, k], {n, 1, 8}, {k, 1, n}] // Flatten (* _Amiram Eldar_, Oct 18 2021 *) %o A348419 (PARI) T(n,k) = (1/mathilbert(n))[k,k] %Y A348419 Cf. A189766 (row sums), A189765, A005249. %Y A348419 A210356 gives the maximum value of each row and A210357 gives the positions of the maximum values. %Y A348419 Main diagonal gives A000515(n-1). %K A348419 nonn,tabl %O A348419 1,2 %A A348419 _Jianing Song_, Oct 18 2021