A348420 a(n) = Product_{k=1..n} (p_k - 1)/2 where p_1, p_2, ..., p_n are the first n primes congruent to 3 modulo 4.
1, 1, 3, 15, 135, 1485, 22275, 467775, 10758825, 312005925, 10296195525, 360366843375, 14054306891625, 576226582556625, 29387555710387875, 1557540452650557375, 98125048516985114625, 6378128153604032450625, 440090842598678239093125
Offset: 0
Examples
A348418(2) = 8, and the number of coprime squares modulo 8 is a(0) = 1; A348418(3) = 8 * 3 = 24, and the number of coprime squares modulo 24 is a(1) = (3-1)/2 = 1; A348418(4) = 8 * 3 * 7 = 168, and the number of coprime squares modulo 168 is a(2) = ((3-1)/2) * ((7-1)/2) = 3; A348418(5) = 8 * 3 * 7 * 11 = 1848, and the number of coprime squares modulo 1848 is a(3) = ((3-1)/2) * ((7-1)/2) * ((11-1)/2) = 15; A348418(6) = 8 * 3 * 7 * 11 * 19 = 35112, and the number of coprime squares modulo 35112 is a(4) = ((3-1)/2) * ((7-1)/2) * ((11-1)/2) * ((19-1)/2) = 135.
Links
- Jianing Song, Table of n, a(n) for n = 0..200
Programs
-
PARI
a(n) = my(t=1); forprime(p=2, , if(p%4==3, t*=(p-1)/2; if(n--<1, return(t)))) \\ following Charles R Greathouse IV's program for A078586
Comments