A348422 Triangle of the Multiset Transformation of A060280.
1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 2, 3, 1, 1, 0, 1, 4, 3, 3, 1, 1, 0, 1, 5, 7, 3, 3, 1, 1, 0, 1, 8, 9, 8, 3, 3, 1, 1, 0, 1, 11, 17, 10, 8, 3, 3, 1, 1, 0, 1, 18, 24, 20, 10, 8, 3, 3, 1, 1, 0, 1, 25, 42, 29, 21, 10, 8, 3, 3, 1, 1, 0, 1, 40, 62, 53, 30, 21, 10, 8, 3, 3, 1, 1, 0, 1
Offset: 1
Examples
The triangle starts 1 0 1 1 0 1 1 1 0 1 2 1 1 0 1 2 3 1 1 0 1 4 3 3 1 1 0 1 5 7 3 3 1 1 0 1 8 9 8 3 3 1 1 0 1 11 17 10 8 3 3 1 1 0 1 18 24 20 10 8 3 3 1 1 0 1 25 42 29 21 10 8 3 3 1 1 0 1 40 62 53 30 21 10 8 3 3 1 1 0 1 58 105 80 56 30 21 10 8 3 3 1 1 0 1 90 159 141 85 57 30 21 10 8 3 3 1 1 0 1 ...
Links
Programs
-
Mathematica
nn = 13; f[n_] := Fibonacci[n-1] + Fibonacci[n+1] - (-1)^n - 1; b[n_] := (1/n) DivisorSum[n, MoebiusMu[#] f[n/#]&]; Rest@CoefficientList[#, y]& /@ (Series[Product[1/(1 - y x^i)^b[i], {i, 1, nn}], {x, 0, nn}] // Rest@CoefficientList[#, x]&) // Flatten (* Jean-François Alcover, Oct 29 2021 *)
Formula
G.f.: Product_{j>=1} 1/(1-y*x^j)^A060280(j). - Jean-François Alcover, Oct 29 2021