cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348422 Triangle of the Multiset Transformation of A060280.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 2, 3, 1, 1, 0, 1, 4, 3, 3, 1, 1, 0, 1, 5, 7, 3, 3, 1, 1, 0, 1, 8, 9, 8, 3, 3, 1, 1, 0, 1, 11, 17, 10, 8, 3, 3, 1, 1, 0, 1, 18, 24, 20, 10, 8, 3, 3, 1, 1, 0, 1, 25, 42, 29, 21, 10, 8, 3, 3, 1, 1, 0, 1, 40, 62, 53, 30, 21, 10, 8, 3, 3, 1, 1, 0, 1
Offset: 1

Views

Author

R. J. Mathar, Oct 18 2021

Keywords

Examples

			The triangle starts
   1
   0   1
   1   0   1
   1   1   0   1
   2   1   1   0   1
   2   3   1   1   0   1
   4   3   3   1   1   0   1
   5   7   3   3   1   1   0   1
   8   9   8   3   3   1   1   0   1
  11  17  10   8   3   3   1   1   0   1
  18  24  20  10   8   3   3   1   1   0   1
  25  42  29  21  10   8   3   3   1   1   0   1
  40  62  53  30  21  10   8   3   3   1   1   0   1
  58 105  80  56  30  21  10   8   3   3   1   1   0   1
  90 159 141  85  57  30  21  10   8   3   3   1   1   0   1
  ...
		

Crossrefs

Cf. A060280 (column k=1), A000045 (row sums).

Programs

  • Mathematica
    nn = 13;
    f[n_] := Fibonacci[n-1] + Fibonacci[n+1] - (-1)^n - 1;
    b[n_] := (1/n) DivisorSum[n, MoebiusMu[#] f[n/#]&];
    Rest@CoefficientList[#, y]& /@ (Series[Product[1/(1 - y x^i)^b[i], {i, 1, nn}], {x, 0, nn}] // Rest@CoefficientList[#, x]&) // Flatten (* Jean-François Alcover, Oct 29 2021 *)

Formula

G.f.: Product_{j>=1} 1/(1-y*x^j)^A060280(j). - Jean-François Alcover, Oct 29 2021