cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348436 Triangle read by rows. T(n,k) is the number of labeled threshold graphs on n vertices with k components, for 1 <= k <= n.

This page as a plain text file.
%I A348436 #35 Nov 24 2021 01:01:16
%S A348436 1,1,1,4,3,1,23,16,6,1,166,115,40,10,1,1437,996,345,80,15,1,14512,
%T A348436 10059,3486,805,140,21,1,167491,116096,40236,9296,1610,224,28,1,
%U A348436 2174746,1507419,522432,120708,20916,2898,336,36,1,31374953,21747460,7537095,1741440,301770,41832,4830,480,45,1
%N A348436 Triangle read by rows. T(n,k) is the number of labeled threshold graphs on n vertices with k components, for 1 <= k <= n.
%C A348436 The class of threshold graphs is the smallest class of graphs that includes K1 and is closed under adding isolated vertices and dominating vertices.
%H A348436 D. Galvin, G. Wesley and B. Zacovic, <a href="https://arxiv.org/abs/2110.08953">Enumerating threshold graphs and some related graph classes</a>, arXiv:2110.08953 [math.CO], 2021.
%H A348436 Sam Spiro, <a href="https://arxiv.org/abs/1909.06518">Counting Threshold Graphs with Eulerian Numbers</a>, arXiv:1909.06518 [math.CO], 2019.
%F A348436 T(1,1) = 1; for n >= 2, T(n,1) = A005840(n)/2; for n >= 3 and 2 <= k <= n-1, T(n,k) = binomial(n,k-1)*T(n-k+1,1); and for n >= 2, T(n,n)=1.
%F A348436 T(n, k) = binomial(n, k-1)*A053525(n - k + 1) if k != n, otherwise 1. - _Peter Luschny_, Oct 24 2021
%e A348436 Triangle begins:
%e A348436          1;
%e A348436          1,        1;
%e A348436          4,        3,       1;
%e A348436         23,       16,       6,       1;
%e A348436        166,      115,      40,      10,      1;
%e A348436       1437,      996,     345,      80,     15,     1;
%e A348436      14512,    10059,    3486,     805,    140,    21,    1;
%e A348436     167491,   116096,   40236,    9296,   1610,   224,   28,   1;
%e A348436    2174746,  1507419,  522432,  120708,  20916,  2898,  336,  36,  1;
%e A348436   31374953, 21747460, 7537095, 1741440, 301770, 41832, 4830, 480, 45, 1;
%e A348436 ...
%p A348436 T := (n, k) -> `if`(n = k, 1, binomial(n, k-1)*A053525(n-k+1)):
%p A348436 for n from 1 to 10 do seq(T(n, k), k=1..n) od; # _Peter Luschny_, Oct 24 2021
%t A348436 eulerian[0, 0] := 1; eulerian[n_, m_] := eulerian[n, m] =
%t A348436 Sum[((-1)^k)*Binomial[n + 1, k]*((m + 1 - k)^n), {k, 0, m + 1}];
%t A348436 (* t[n] counts the labeled threshold graphs on n vertices *)
%t A348436 t[0] = 1; t[1] = 1;
%t A348436 t[n_] := t[n] = Sum[(n - k)*eulerian[n - 1, k - 1]*(2^k), {k, 1, n - 1}];
%t A348436 T[1, 1] := 1; T[n_, 1] := T[n, 1] = (1/2)*t[n]; T[n_, n_] := T[n, n] = 1;
%t A348436 T[n_, k_] := T[n, k] = Binomial[n, k - 1]*T[n - k + 1, 1];
%t A348436 Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten
%Y A348436 Cf. A005840 (row sums), A317057 (column k=1), A053525.
%K A348436 nonn,tabl
%O A348436 1,4
%A A348436 _David Galvin_, Oct 18 2021