cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348452 Irregular triangle read by rows: T(n,k) (n >= 1, 1 <= k <= n^2) is the number of ways to tile an n X n chessboard with k rook-connected polyominoes of equal area.

Original entry on oeis.org

1, 1, 2, 0, 1, 1, 0, 10, 0, 0, 0, 0, 0, 1, 1, 70, 0, 117, 0, 0, 0, 36, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 4006, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 80518, 264500, 442791, 0, 451206, 0, 0, 178939, 0, 0, 80092, 0, 0, 0, 0, 0, 6728, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 158753814, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

N. J. A. Sloane, Oct 27 2021

Keywords

Comments

The board has n^2 squares. The colors do not matter. T(n,k) is zero unless k divides n^2. The tiles are rook-connected polygons made from n^2/k squares.
This is the "labeled" version of the problem. Symmetries of the square are not taken into account. Rotations and reflections count as different.
A348453 (the main entry for this problem) displays the same data in a more compact way (by omitting the zero entries from each row).
The data is taken from A004003, A172477, and Schutzman & MGGG (2018).

Examples

			The first seven rows of the triangle are:
1,
1, 2, 0, 1,
1, 0, 10, 0, 0, 0, 0, 0, 1,
1, 70, 0, 117, 0, 0, 0, 36, 0, 0, 0, 0, 0, 0, 0, 1,
1, 0, 0, 0, 4006, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
1, 80518, 264500, 442791, 0, 451206, 0, 0, 178939, 0, 0, 80092, 0, 0, 0, 0, 0, 6728, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
1, 0, 0, 0, 0, 0, 158753814, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
...
The domino is the only polyomino of area 2, and the 36 ways to tile a 4 X 4 square with dominoes are shown in one of the links.
		

Crossrefs

Cf. A348453. A348454 and A348455 are similar triangles with the data in each row reversed. The row sums are in A348789.

Formula

A formula for T(n, n^2/2) was found by Kastelyn (see A004003 and A099390). T(n,n) is studied in A172477.

Extensions

More than the usual number of terms are given, in order to show the first seven rows.