cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348461 Size of largest bipartite biregular Moore graph of diameter 4 and degrees n and n.

This page as a plain text file.
%I A348461 #26 Nov 01 2021 00:45:44
%S A348461 8,30,80,170,312
%N A348461 Size of largest bipartite biregular Moore graph of diameter 4 and degrees n and n.
%C A348461 a(7) >= 516, a(8) = 800, a(9) = 1170, a(10) = 1640.
%H A348461 G. Araujo-Pardo, C. Dalfó, M. Á. Fiol and N. López, <a href="https://arxiv.org/abs/2103.11443">Bipartite biregular Moore graphs</a>, arXiv:2103.11443 [math.CO], 2021.
%H A348461 G. Araujo-Pardo, C. Dalfó, M. Á. Fiol and N. López, <a href="https://doi.org/10.1016/j.disc.2021.112582">Bipartite biregular Moore graphs</a>, Discrete Math., 334 (2021), # 112582.
%F A348461 Empirical observation: For the terms a(2)-a(6) and a(8)-a(10)  a(n) = 2*(A027444(n-1) + 1).  It is unknown whether this is also valid for n = 7 and n > 10. - _Hugo Pfoertner_, Oct 31 2021
%F A348461 Is this the same as 2*A053698(n-1)? If not, where is the first place these sequences differ? - _Omar E. Pol_, Oct 31 2021
%F A348461 a(n) <= 2*A053698(n-1) (the Moore bound). - _Pontus von Brömssen_, Oct 31 2021
%Y A348461 Cf. A027444, A053698, A348462, A348463.
%K A348461 nonn,more
%O A348461 2,1
%A A348461 _N. J. A. Sloane_, Oct 31 2021