This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A348462 #17 Nov 01 2021 00:46:11 %S A348462 12,35,78,147,248 %N A348462 Size of largest bipartite biregular Moore graph of diameter 6 and degrees n and 2. %C A348462 a(7) >= 387, a(8) = 570, a(9) = 803, a(10) = 1092. %H A348462 G. Araujo-Pardo, C. Dalfó, M. Á. Fiol and N. López, <a href="https://arxiv.org/abs/2103.11443">Bipartite biregular Moore graphs</a>, arXiv:2103.11443 [math.CO], 2021. %H A348462 G. Araujo-Pardo, C. Dalfó, M. Á. Fiol and N. López, <a href="https://doi.org/10.1016/j.disc.2021.112582">Bipartite biregular Moore graphs</a>, Discrete Math., 334 (2021), # 112582. %F A348462 Empirical observation: For the terms a(2)-a(6) and a(8)-a(10) a(n) = A081437(n-1) + 2. It is unknown whether this is also valid for n = 7 and for n > 10. - _Hugo Pfoertner_, Oct 31 2021 %F A348462 a(n) <= A027620(n-2) + 3 = A081437(n-1) + 2 (the Moore bound). - _Pontus von Brömssen_, Oct 31 2021 %Y A348462 Cf. A027620, A081437, A348461, A348463. %K A348462 nonn,more %O A348462 2,1 %A A348462 _N. J. A. Sloane_, Oct 31 2021