cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348463 Size of largest bipartite biregular Moore graph of diameter 6 and degrees n and n.

This page as a plain text file.
%I A348463 #16 Oct 31 2021 22:47:43
%S A348463 12,126,728,2730,7812
%N A348463 Size of largest bipartite biregular Moore graph of diameter 6 and degrees n and n.
%C A348463 18660 <= a(7) <= 18662, a(8) = 39216, a(9) = 74898, a(10) = 132860.
%C A348463 Table 3 from these references gives the size of the largest bipartite biregular Moore graph of diameter 3 and degrees n and n, and appears to match 2*A002061.
%H A348463 G. Araujo-Pardo, C. Dalfó, M. Á. Fiol and N. López, <a href="https://arxiv.org/abs/2103.11443">Bipartite biregular Moore graphs</a>, arXiv:2103.11443 [math.CO], 2021. See Table 2.
%H A348463 G. Araujo-Pardo, C. Dalfó, M. Á. Fiol and N. López, <a href="https://doi.org/10.1016/j.disc.2021.112582">Bipartite biregular Moore graphs</a>, Discrete Math., 334 (2021), # 112582. See Table 3.
%F A348463 Empirical observation: a(n) = 2*(A152031(n-1) + 1) matches terms a(2)-a(6) and a(8)-a(10). - _Hugo Pfoertner_, Oct 31 2021
%F A348463 a(n) <= 2*A053700(n-1) = 2*(A152031(n-1) + 1) (the Moore bound). - _Pontus von Brömssen_, Oct 31 2021
%Y A348463 Cf. A002061, A053700, A152031, A348461, A348462.
%K A348463 nonn,more
%O A348463 2,1
%A A348463 _N. J. A. Sloane_, Oct 31 2021