This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A348477 #36 Oct 22 2021 23:24:57 %S A348477 1,2,3,2,2,5,2,3,7,2,3,3,2,2,5,11,2,2,3,13,2,7,3,5,2,4,17,2,3,2,19,2, %T A348477 2,5,3,7,2,11,23,2,3,3,5,2,2,13,3,3,2,2,7,29,2,3,5,31,2,5,3,11,2,17,5, %U A348477 7,2,2,3,2,37,2,19,3,13,2,3,5,41,2,3,7,43,2,2,11,3,2,5,2,23,47,2,4,3,7,2,2,5,2,3,17,2,2,13,53,2,3,3,5,11,2,3,7,3,19,2,29 %N A348477 Drop all 1 but the first 1 in A035306. %C A348477 List of prime divisors of n and their exponents, ignoring the exponent 1. - _Michael De Vlieger_, Oct 20 2021 %H A348477 Seiichi Manyama, <a href="/A348477/b348477.txt">Table of n, a(n) for n = 1..10000</a> %H A348477 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PrimeFactorization.html">Prime Factorization</a>. %e A348477 n prime factorization triangle %e A348477 1 = 1. -> 1; %e A348477 2 = 2. -> 2; %e A348477 3 = 3. -> 3; %e A348477 4 = 2^2. -> 2, 2; %e A348477 5 = 5. -> 5; %e A348477 6 = 2*3. -> 2, 3; %e A348477 7 = 7. -> 7; %e A348477 8 = 2^3. -> 2, 3; %e A348477 9 = 3^2. -> 3, 2; %e A348477 10 = 2*5. -> 2, 5; %e A348477 11 = 11. -> 11; %e A348477 12 = 2^2*3. -> 2, 2, 3; %e A348477 13 = 13. -> 13; %e A348477 14 = 2*7 -> 2, 7; %e A348477 15 = 3*5. -> 3, 5; %e A348477 16 = 2^4. -> 2, 4; %t A348477 Array[DeleteCases[Flatten@ FactorInteger[#], 1] &, 58] /. {} -> {1} // Flatten (* _Michael De Vlieger_, Oct 20 2021 *) %o A348477 (PARI) %o A348477 tabf(nn) = if(nn==1, print1(1, ", "), my(f=factor(nn)); for(i=1, #f~, for(j=1, 2, if((k=f[i, j])>j-1, print1(k, ", "))))); %o A348477 (Ruby) %o A348477 require 'prime' %o A348477 def A348477(n) %o A348477 ary = (2..n).map{|i| i.prime_division}.flatten %o A348477 ary.delete(1) %o A348477 [1] + ary %o A348477 end %o A348477 p A348477(60) %Y A348477 Column 1 is A020639. %Y A348477 Row lengths are A238949(n) for n > 1. %Y A348477 Cf. A027746, A035306. %K A348477 nonn,easy,tabf %O A348477 1,2 %A A348477 _Seiichi Manyama_, Oct 20 2021