cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348482 Triangle read by rows: T(n,k) = (Sum_{i=k..n} i!)/(k!) for 0 <= k <= n.

This page as a plain text file.
%I A348482 #16 Jul 11 2024 17:12:42
%S A348482 1,2,1,4,3,1,10,9,4,1,34,33,16,5,1,154,153,76,25,6,1,874,873,436,145,
%T A348482 36,7,1,5914,5913,2956,985,246,49,8,1,46234,46233,23116,7705,1926,385,
%U A348482 64,9,1,409114,409113,204556,68185,17046,3409,568,81,10,1
%N A348482 Triangle read by rows: T(n,k) = (Sum_{i=k..n} i!)/(k!) for 0 <= k <= n.
%C A348482 The matrix inverse M = T^(-1) has terms M(n,n) = 1 for n >= 0, M(n,n-1) = -(n+1) for n > 0, and M(n,n-2) = n for n > 1, otherwise 0.
%H A348482 Sela Fried, <a href="/A348482/a348482.pdf">On a sum involving factorials</a>, 2024.
%F A348482 T(n,n) = 1 and T(2*n,n) = A109398(n) for n >= 0; T(n,n-1) = n+1 for n > 0; T(n,n-2) = n^2 for n > 1.
%F A348482 T(n,k) - T(n-1,k) = (n!) / (k!) = A094587(n,k) for 0 <= k < n.
%F A348482 T(n,k) = (k+2) * (T(n,k+1) - T(n,k+2)) for 0 <= k < n-1.
%F A348482 T(n,k) = (T(n,k-1) - 1) / k for 0 < k <= n.
%F A348482 T(n,k) * T(n-1,k-1) - T(n-1,k) * T(n,k-1) = (n!) / (k!) for 0 < k < n.
%F A348482 T(n,1) = T(n,0)-1 = Sum_{k=0..n-1} T(n,k)/(k+2) for n > 0 (conjectured).
%F A348482 Sum_{k=0..n} binomial(k+r,k) * (1-k) * T(n+r,k+r) = binomial(n+r+1,n) for n >= 0 and r >= 0.
%F A348482 Sum_{k=0..n} (-1)^k * (k+1) * T(n,k) = (1 + (-1)^n) / 2 for n >= 0.
%F A348482 Sum_{k=0..n} (-1)^k * (k!) * T(n,k) = Sum_{k=0..n} (k!) * (1+(-1)^k) / 2 for n >= 0.
%F A348482 The row polynomials p(n,x) = Sum_{k=0..n} T(n,k) * x^k for n >= 0 satisfy the following equations:
%F A348482   (a) p(n,x) - p'(n,x) = (x^(n+1)-1) / (x-1) for n >= 0, where p' is the first derivative of p;
%F A348482   (b) p(n,x) - (n+1) * p(n-1,x) + n * p(n-2,x) = x^n for n > 1.
%F A348482   (c) p(n,x) = (x+1) * p(n-1,x) + 1 + Sum_{i=1..n-1} (d/dx)^i p(n-1,x) for n > 0 (conjectured).
%F A348482 Row sums p(n,1) equal A002104(n+1) for n >= 0.
%F A348482 Alternating row sums p(n,-1) equal A173184(n) for n >= 0 (conjectured).
%F A348482 The three conjectures stated above are true. See links. - _Sela Fried_, Jul 11 2024.
%F A348482 From _Peter Luschny_, Jul 11 2024: (Start)
%F A348482 T(n, k) = (t(k) - t(n + 1)) / k!, where t(n) = (-1)^(n + 1) * Gamma(n + 1) * Subfactorial(-(n + 1)).
%F A348482 T(n, k) = A143122(n, k) / k!. (End)
%e A348482 The triangle T(n,k) for 0 <= k <= n starts:
%e A348482 n\k :       0       1       2      3      4     5    6   7   8  9
%e A348482 =================================================================
%e A348482   0 :       1
%e A348482   1 :       2       1
%e A348482   2 :       4       3       1
%e A348482   3 :      10       9       4      1
%e A348482   4 :      34      33      16      5      1
%e A348482   5 :     154     153      76     25      6     1
%e A348482   6 :     874     873     436    145     36     7    1
%e A348482   7 :    5914    5913    2956    985    246    49    8   1
%e A348482   8 :   46234   46233   23116   7705   1926   385   64   9   1
%e A348482   9 :  409114  409113  204556  68185  17046  3409  568  81  10  1
%e A348482   etc.
%t A348482 T[n_, k_] := Sum[i!, {i, k, n}]/k!; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* _Amiram Eldar_, Oct 20 2021 *)
%Y A348482 Cf. A109398, A094587, A002104 (row sums), A173184 (alt. row sums), A000012 (main diagonal), A000027(1st subdiagonal), A000290 (2nd subdiagonal), A081437 (3rd subdiagonal), A192398 (4th subdiagonal), A003422 (column 0), A007489 (column 1), A345889 (column 2), A143122.
%K A348482 nonn,easy,tabl
%O A348482 0,2
%A A348482 _Werner Schulte_, Oct 20 2021