This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A348484 #33 Dec 06 2022 09:59:39 %S A348484 1,4,5,8,13,20,25,32,41,52 %N A348484 Maximum number of squares on an n X n chessboard such that no two are two steps apart horizontally or vertically. %C A348484 The sequence 1, 4, 5, 8, 13, ... with g.f. -x*(1 +2*x -2*x^2 +2*x^3 +x^4)/ ((1+x) *(x^2+1) *(x-1)^3) and a(n)= 2*a(n-1) -a(n-2) +a(n-4) -2*a(n-5) +a(n-6) is a lower bound for a(n) achieved by packing 2x2 squares with 1's and 2x2 squares with 0's in a checkerboard pattern into the chessboard. - _R. J. Mathar_, Dec 03 2022 %F A348484 Conjectures: %F A348484 a(n) = n^2/2 for n == 0 (mod 4). %F A348484 a(n) = (n^2 + 1)/2 for n == 1 or 3 (mod 4). %F A348484 a(n) = n^2/2 + 2 for n == 2 (mod 4). %e A348484 For n = 1, a(1) = (1^2 + 1)/2 = 1 %e A348484 1 %e A348484 For n = 2, a(2) = (2^2)/2 + 2 = 4 %e A348484 11 %e A348484 11 %e A348484 For n = 3, a(3) = (3^2 + 1)/2 = 5 %e A348484 Starting here the solutions are not unique. We can mix 2X2 blocks from and S shapes along the diagonals. %e A348484 110 %e A348484 110 %e A348484 001 %e A348484 or %e A348484 110 %e A348484 011 %e A348484 001 %e A348484 For n = 4, a(4) = (4^2)/2 = 8 %e A348484 1100 %e A348484 1100 %e A348484 0011 %e A348484 0011 %e A348484 or %e A348484 1100 %e A348484 0110 %e A348484 0011 %e A348484 1001 %e A348484 For n = 5, a(5) = (5^2 + 1)/2 = 13 %e A348484 11001 %e A348484 11001 %e A348484 00110 %e A348484 00110 %e A348484 11001 %e A348484 or %e A348484 11001 %e A348484 01100 %e A348484 00110 %e A348484 10011 %e A348484 11001 %e A348484 For n = 6, a(6) = (6^6)/2 + 2 = 20 %e A348484 110011 %e A348484 110011 %e A348484 001100 %e A348484 001100 %e A348484 110011 %e A348484 110011 %Y A348484 Cf. A048716. %K A348484 nonn,more %O A348484 1,2 %A A348484 _Yang Hong_, Oct 20 2021