cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348487 Positive numbers whose square starts and ends with exactly one 1.

This page as a plain text file.
%I A348487 #30 Sep 08 2022 08:46:26
%S A348487 1,11,39,41,101,111,119,121,129,131,139,141,319,321,329,331,349,351,
%T A348487 359,361,369,371,379,381,389,391,399,401,409,411,419,421,429,431,439,
%U A348487 441,1001,1009,1011,1019,1021,1029,1031,1039,1041,1099,1101,1109,1111,1119,1121,1129,1131,1139
%N A348487 Positive numbers whose square starts and ends with exactly one 1.
%C A348487 When a square ends with 1, this square ends with exactly one 1.
%C A348487 Sequences A000533 and A253213 show that there are an infinity of terms. The square of their terms, for n >= 3, starts and ends with exactly one 1. Also, the numbers 119, 1119, 11119, ..., ((10^k + 71) / 9)^2, (k >= 3) are terms. The squares ((10^k + 71) / 9)^2, have the last digit 1 and because 12*10^(2*k - 3) < ((10^k + 71) / 9)^2 <13*10^(2*k - 3), for k >= 3, the squares ((10^k + 71) / 9)^2, k >= 4, start with 12. - _Marius A. Burtea_, Oct 21 2021
%e A348487 39 is a term since 39^2 = 1521.
%e A348487 109 is not a term since 109^2 = 11881.
%e A348487 119 is a term since 119^2 = 14161.
%t A348487 Join[{1}, Select[Range[11, 1200], (d = IntegerDigits[#^2])[[1]] == d[[-1]] == 1 && d[[2]] != 1 &]] (* _Amiram Eldar_, Oct 21 2021 *)
%o A348487 (Python)
%o A348487 from itertools import count, takewhile
%o A348487 def ok(n):
%o A348487   s = str(n*n); return len(s.rstrip("1")) == len(s.lstrip("1")) == len(s)-1
%o A348487 def aupto(N):
%o A348487   r = takewhile(lambda x: x<=N, (10*i+d for i in count(0) for d in [1, 9]))
%o A348487   return [k for k in r if ok(k)]
%o A348487 print(aupto(1140)) # _Michael S. Branicky_, Oct 21 2021
%o A348487 (PARI) isok(k) = my(d=digits(sqr(k))); (d[1]==1) && (d[#d]==1) && if (#d>2, (d[2]!=1) && (d[#d-1]!=1), 1); \\ _Michel Marcus_, Oct 21 2021
%o A348487 (Magma) [1] cat [n:n in [2..1200]|Intseq(n*n)[1] eq 1 and Intseq(n*n)[#Intseq(n*n)] eq 1 and Intseq(n*n)[-1+#Intseq(n*n)] ne 1]; // _Marius A. Burtea_, Oct 21 2021
%Y A348487 Cf. A045855, A090771, A253213, A273372 (squares ending with 1), A017281, A017377.
%Y A348487 Cf. A000533, A253213 for n >= 2 (subsequences).
%Y A348487 Subsequence of A305719.
%K A348487 nonn,base
%O A348487 1,2
%A A348487 _Bernard Schott_, Oct 21 2021