cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348488 Positive numbers whose square starts and ends with exactly one 4.

This page as a plain text file.
%I A348488 #29 Sep 08 2022 08:46:26
%S A348488 2,22,68,202,208,218,222,642,648,652,658,672,678,682,692,698,702,2002,
%T A348488 2008,2018,2022,2028,2032,2042,2048,2052,2058,2068,2072,2078,2082,
%U A348488 2092,2122,2128,2132,2142,2148,2152,2158,2168,2172,2178,2182,2192,2198,2202,2208,2218,2222,2228
%N A348488 Positive numbers whose square starts and ends with exactly one 4.
%C A348488 When a square ends with 4 (A273375), this square may end with precisely one 4, two 4's or three 4's (A328886).
%C A348488 This sequence is infinite as each 2*(10^m + 1), m >= 1 or 2*(10^m + 4), m >= 2 is a term.
%C A348488 Numbers 2, 22, 222, ..., 2*(10^k - 1) / 9, (k >= 1), as well as numbers 2228, 22228, ..., 2*(10^k + 52) / 9, (k >= 4) are terms and have no digits 0. - _Marius A. Burtea_, Oct 24 2021
%e A348488 22 is a term since 22^2 = 484.
%e A348488 638 is not a term since 638^2 = 407044.
%e A348488 668 is not a term since 668^2 = 446224.
%t A348488 Join[{2}, Select[Range[10, 2000], (d = IntegerDigits[#^2])[[1]] == d[[-1]] == 4 && d[[-2]] != 4 && d[[2]] != 4 &]] (* _Amiram Eldar_, Oct 24 2021 *)
%o A348488 (PARI) isok(k) = my(d=digits(sqr(k))); (d[1]==4) && (d[#d]==4) && if (#d>2, (d[2]!=4) && (d[#d-1]!=4), 1); \\ _Michel Marcus_, Oct 24 2021
%o A348488 (Magma) [2] cat [n:n in [4..2300]|Intseq(n*n)[1] eq 4 and Intseq(n*n)[#Intseq(n*n)] eq 4 and Intseq(n*n)[-1+#Intseq(n*n)] ne 4 and Intseq(n*n)[2] ne 4]; // _Marius A. Burtea_, Oct 24 2021
%o A348488 (Python)
%o A348488 from itertools import count, takewhile
%o A348488 def ok(n):
%o A348488   s = str(n*n); return len(s.rstrip("4")) == len(s.lstrip("4")) == len(s)-1
%o A348488 def aupto(N):
%o A348488   r = takewhile(lambda x: x<=N, (10*i+d for i in count(0) for d in [2, 8]))
%o A348488   return [k for k in r if ok(k)]
%o A348488 print(aupto(2228)) # _Michael S. Branicky_, Oct 24 2021
%Y A348488 Cf. A045858, A273375 (squares ending with 4), A017317, A328886 (squares ending with three 4).
%Y A348488 Cf. A002276 \ {0} (a subsequence).
%Y A348488 Subsequence of A305719.
%Y A348488 Similar to: A348487 (k=1), this sequence (k=4), A348489 (k=5), A348490 (k=6).
%K A348488 nonn,base
%O A348488 1,1
%A A348488 _Bernard Schott_, Oct 24 2021