This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A348490 #25 Sep 08 2022 08:46:26 %S A348490 26,246,254,256,264,776,784,786,794,796,804,806,824,826,834,836,2454, %T A348490 2456,2464,2466,2474,2476,2484,2486,2494,2496,2504,2506,2514,2516, %U A348490 2524,2526,2534,2536,2544,2546,2554,2556,2564,2566,2594,2596,2604,2606,2614,2616,2624,2626,2634,2636,2644,7746 %N A348490 Positive numbers whose square starts and ends with exactly one 6. %C A348490 When a square ends with 6, it ends with only one 6. %C A348490 From _Marius A. Burtea_, Oct 30 2021 : (Start) %C A348490 The sequence is infinite because the numbers 806, 8006, 80006, ..., 8*10^k + 6, k >= 2, are terms with squares 649636, 64096036, 6400960036, 640009600036, ..., 64*10^(2*k) + 96*10^k + 36, k >= 2. %C A348490 Numbers 796, 7996, 79996, 799996, 7999996, 79999996, ..., 10^k*8 - 4, k >= 2, are terms and have no digits 0, because their squares are 633616, 63936016, 6399360016, 639993600016, 63999936000016, 6399999360000016, .... %C A348490 Also 794, 7994, 79994, 799994, ..., (8*10^k - 6), k >= 2, are terms and have no digits 0, because their squares are 630436, 63904036, 6399040036, 639990400036, 63999904000036, 6399999040000036, ... (End) %e A348490 26^2 = 676, hence 26 is a term. %e A348490 814^2 = 662596, hence 814 is not a term. %t A348490 Select[Range[10, 7750], (d = IntegerDigits[#^2])[[1]] == d[[-1]] == 6 && d[[2]] != 6 &] (* _Amiram Eldar_, Oct 30 2021 *) %o A348490 (Python) %o A348490 from itertools import count, takewhile %o A348490 def ok(n): %o A348490 s = str(n*n); return len(s.rstrip("6")) == len(s.lstrip("6")) == len(s)-1 %o A348490 def aupto(N): %o A348490 r = takewhile(lambda x: x<=N, (10*i+d for i in count(0) for d in [4, 6])) %o A348490 return [k for k in r if ok(k)] %o A348490 print(aupto(2644)) # _Michael S. Branicky_, Oct 29 2021 %o A348490 (PARI) isok(k) = my(d=digits(sqr(k))); (d[1]==6) && (d[#d]==6) && if (#d>2, (d[2]!=6) && (d[#d-1]!=6), 1); \\ _Michel Marcus_, Oct 30 2021 %o A348490 (Magma) [n:n in [4..7500]|Intseq(n*n)[1] eq 6 and Intseq(n*n)[#Intseq(n*n)] eq 6 and Intseq(n*n)[-1+#Intseq(n*n)] ne 6 ]; // _Marius A. Burtea_, Oct 30 2021 %Y A348490 Cf. A045789, A045860, A273373 (squares ending with 6). %Y A348490 Similar to: A348487 (k=1), A348488 (k=4), A348489 (k=5), this sequence (k=6), A348491 (k=9). %Y A348490 Subsequence of A305719. %K A348490 nonn,base %O A348490 1,1 %A A348490 _Bernard Schott_, Oct 29 2021