This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A348509 #11 Nov 01 2021 19:21:00 %S A348509 1,3,5,27,7,5,11,27,75,21,13,45,17,11,35,405,19,225,23,189,55,39,29,9, %T A348509 49,17,125,99,31,35,37,729,65,57,77,2025,41,23,85,189,43,55,47,27,525, %U A348509 29,53,675,363,147,19,51,59,125,13,99,115,93,61,315,67,111,275,5103,119,65,71,513,29,77,73,405,79,41,245 %N A348509 a(n) is the numerator of the harmonic mean of the divisors of A003961(n). %H A348509 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %F A348509 a(n) = A099377(A003961(n)). %F A348509 a(n) = A336845(n) / A336846(n). %t A348509 f[p_, e_] := (e + 1)*(pn = NextPrime[p])^e*(pn - 1)/(pn^(e + 1) - 1); a[1] = 1; a[n_] := Numerator[Times @@ f @@@ FactorInteger[n]]; Array[a, 100] (* _Amiram Eldar_, Oct 31 2021 *) %o A348509 (PARI) %o A348509 A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; %o A348509 A099377(n) = { my(d=divisors(n)); numerator(#d/sum(k=1, #d, 1/d[k])); }; \\ From A099377 %o A348509 A348509(n) = A099377(A003961(n)); %Y A348509 Cf. A003961, A099377, A336845, A336846. %Y A348509 Cf. A336848 (denominators). %K A348509 nonn,frac %O A348509 1,2 %A A348509 _Antti Karttunen_, Oct 31 2021