A348518 Positive integers m with the property that there are 5 positive integers b_1 < b_2 < b_3 < b_4 < b_5 such that b_1 divides b_2, b_2 divides b_3, b_3 divides b_4, b_4 divides b_5, and m = b_1 + b_2 + b_3 + b_4 + b_5.
31, 39, 43, 45, 46, 47, 55, 57, 58, 59, 61, 62, 63, 64, 67, 69, 70, 71, 73, 75, 76, 77, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 99, 100, 101, 103, 105, 106, 107, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 121, 122, 123, 124, 125, 126, 127, 128
Offset: 1
Keywords
Examples
As 43 = 1 + 2 + 4 + 12 + 24, 43 is a term. As 89 = 1 + 4 + 12 + 24 + 48, 89 is another term.
Links
- Diophante, A496 - Pentaphiles et pentaphobes (in French).
Crossrefs
Programs
-
Mathematica
Select[Range@100,Select[Select[IntegerPartitions[#,{5}],Length@Union@#==5&],And@@(IntegerQ/@Divide@@@Partition[#,2,1])&]!={}&] (* Giorgos Kalogeropoulos, Oct 22 2021 *)
Comments