This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A348520 #19 Nov 18 2021 03:59:31 %S A348520 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26, %T A348520 27,28,29,30,32,33,34,35,36,37,38,40,41,42,44,48,49,50,51,52,53,54,56, %U A348520 60,65,66,68,72,74,80,84,97,98,102,104,108,120,132,144,168,194,240 %N A348520 Pentaphobe or 5-phobe numbers: integers that are not pentaphile numbers. %C A348520 Pentaphile numbers are described in A348518. %C A348520 The idea for this sequence comes from the French website Diophante (see link). %C A348520 It is possible to generalize for "k-phile" or "k-phobe" numbers (see Crossrefs). %C A348520 The set of k-phobe numbers is always finite and the smallest one is always 1; here, there exist 68 pentaphobe numbers and the largest one is 240. %H A348520 Diophante, <a href="http://www.diophante.fr/problemes-par-themes/arithmetique-et-algebre/a4-equations-diophantiennes/3143-a496-pentaphiles-et-pentaphobes">A496 - Pentaphiles et pentaphobes</a> (in French). %e A348520 There are no 5 positive integers b_1 < b_2 < b_3 < b_4 < b_5 such that b_1 divides b_2, b_2 divides b_3, b_3 divides b_4, b_4 divides b_5, and 32 = b_1 + b_2 + b_3 + b_4 + b_5, hence 32 is a term. %o A348520 (PARI) isok(k) = forpart(p=k, if (#Set(p) == 5, if (!(p[2] % p[1]) && !(p[3] % p[2]) && !(p[4] % p[3]) && !(p[5] % p[4]), return(0))), , [5, 5]); return(1); \\ _Michel Marcus_, Nov 14 2021 %Y A348520 k-phile numbers: A160811 \ {5} (k=3), A348517 (k=4), A348518 (k=5). %Y A348520 k-phobe numbers: A019532 (k=3), A348519 (k=4), this sequence (k=5). %K A348520 nonn,fini,full %O A348520 1,2 %A A348520 _Bernard Schott_, Nov 02 2021