cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348523 Numbers that are both infinitary and noninfinitary abundant numbers.

This page as a plain text file.
%I A348523 #9 Oct 22 2021 16:15:05
%S A348523 960,1440,1800,2016,2400,2940,3240,3528,3780,4536,4860,6720,7260,8640,
%T A348523 10080,10140,10560,12096,12480,12600,13860,14784,15120,15360,15840,
%U A348523 16320,16380,16800,17472,17640,18240,18480,18720,18900,19008,19800,20160,21420,21600,21840
%N A348523 Numbers that are both infinitary and noninfinitary abundant numbers.
%C A348523 Apparently, the smallest odd term is 9170790153525.
%H A348523 Amiram Eldar, <a href="/A348523/b348523.txt">Table of n, a(n) for n = 1..10000</a>
%e A348523 960 is a term since A049417(960) = 2040 > 2*960 = 1920 and A348271(960) = 1008 > 960.
%t A348523 f[p_, e_] := Module[{b = IntegerDigits[e, 2], m}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ f @@@ FactorInteger[n]; q[n_] := (i = isigma[n]) > 2*n && DivisorSigma[1, n] - i > n; Select[Range[10^4], q]
%Y A348523 Intersection of A129656 and A348274.
%Y A348523 Subsequence of A068403.
%Y A348523 Cf. A049417, A348271.
%K A348523 nonn
%O A348523 1,1
%A A348523 _Amiram Eldar_, Oct 21 2021