cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348527 Noninfinitary Zumkeller numbers: numbers whose set of noninfinitary divisors is nonempty and can be partitioned into two disjoint sets of equal sum.

This page as a plain text file.
%I A348527 #10 Oct 22 2021 16:14:56
%S A348527 48,80,96,112,150,180,240,252,294,336,360,396,432,468,480,486,504,528,
%T A348527 560,600,612,624,630,672,684,720,726,768,792,810,816,828,864,880,912,
%U A348527 936,960,1008,1014,1040,1044,1050,1056,1104,1116,1120,1134,1176,1200,1232,1248
%N A348527 Noninfinitary Zumkeller numbers: numbers whose set of noninfinitary divisors is nonempty and can be partitioned into two disjoint sets of equal sum.
%C A348527 The smallest odd term is a(104) = 2475.
%H A348527 Amiram Eldar, <a href="/A348527/b348527.txt">Table of n, a(n) for n = 1..10000</a>
%e A348527 48 is a term since its set of noninfinitary divisors, {2, 4, 6, 8, 12, 24}, can be partitioned into the two disjoint sets, {2, 6, 8, 12} and {4, 24}, whose sums are equal: 2 + 6 + 8 + 12 = 4 + 24 = 28.
%t A348527 nidiv[1] = {}; nidiv[n_] := Complement[Divisors[n], Sort@ Flatten@ Outer[Times, Sequence @@ (FactorInteger[n] /. {p_, m_Integer} :> p^Select[Range[0, m], BitOr[m, #] == m &])]]; nizQ[n_] := Module[{d = nidiv[n], sum, x}, sum = Plus @@ d; sum > 0 && EvenQ[sum] && CoefficientList[Product[1 + x^i, {i, d}], x][[1 + sum/2]] > 0]; Select[Range[1250], !IntegerQ@ Log2@ DivisorSigma[0, #] && nizQ[#] &]
%Y A348527 Cf. A348271, A348274, A348341.
%Y A348527 Similar sequences: A083207, A290466, A335215, A335142, A335197, A335218.
%K A348527 nonn
%O A348527 1,1
%A A348527 _Amiram Eldar_, Oct 21 2021