This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A348529 #10 Mar 01 2022 05:32:06 %S A348529 0,0,1,1,3,4,6,11,16,25,39,61,94,147,227,350,546,846,1309,2030,3147, %T A348529 4875,7558,11715,18154,28136,43609,67586,104747,162346,251610,389958, %U A348529 604381,936699,1451743,2249991,3487152,5404570,8376292,12982016,20120202,31183350,48329596,74903735 %N A348529 Number of compositions (ordered partitions) of n into two or more triangular numbers. %F A348529 a(n) = A023361(n) - A010054(n). - _Alois P. Heinz_, Oct 21 2021 %p A348529 b:= proc(n) option remember; `if`(n=0, 1, add( %p A348529 `if`(issqr(8*j+1), b(n-j), 0), j=1..n)) %p A348529 end: %p A348529 a:= n-> b(n)-`if`(issqr(8*n+1), 1, 0): %p A348529 seq(a(n), n=0..43); # _Alois P. Heinz_, Oct 21 2021 %t A348529 b[n_] := b[n] = If[n == 0, 1, Sum[ %t A348529 If[IntegerQ@ Sqrt[8*j + 1], b[n - j], 0], {j, 1, n}]]; %t A348529 a[n_] := b[n] - If[IntegerQ@ Sqrt[8*n + 1], 1, 0]; %t A348529 Table[a[n], {n, 0, 43}] (* _Jean-François Alcover_, Mar 01 2022, after _Alois P. Heinz_ *) %Y A348529 Cf. A000217, A010054, A023361, A347805, A348526, A348528. %K A348529 nonn %O A348529 0,5 %A A348529 _Ilya Gutkovskiy_, Oct 21 2021