This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A348532 #81 Nov 19 2021 07:44:42 %S A348532 1,1,2,2,7,9,43,59,338,490,3097,4639,31283,48107,338553,531469, %T A348532 3857036,6157068,45713546,73996100 %N A348532 a(n) is the number of multisets of integers that are possible to reach by starting with n occurrences of 0 and by splitting and reverse splitting. %C A348532 Splitting is taking 2 occurrences of the same integer and incrementing one of them by 1 and decrementing the other occurrence by 1. %C A348532 Reverse splitting is taking two elements with a difference of 2 and incrementing the smaller one by 1 and decrementing the larger one by 1. It is the opposite of splitting. %F A348532 It appears that a(n) = A000571(n) for odd n. %e A348532 For n = 5, the multisets are as follows: %e A348532 {{0,0,0,0,0}} {{-1,0,0,0,1}} {{-1,-1,0,1,1}} %e A348532 {{-1,-1,0,0,2}} {{-1,-1,-1,1,2}} {{-2,0,0,1,1}} %e A348532 {{-2,0,0,0,2}} {{-2,-1,1,1,1}} {{-2,-1,0,1,2}}. %e A348532 Therefore, a(5) = 9. %e A348532 For n = 6, the multisets are as follows: %e A348532 {{0,0,0,0,0,0}} {{-1,0,0,0,0,1}} {{-1,-1,0,0,1,1}} %e A348532 {{-1,-1,0,0,0,2}} {{-1,-1,-1,1,1,1}} {{-1,-1,-1,0,1,2}} %e A348532 {{-1,-1,-1,0,0,3}}* {{-1,-1,-1,-1,2,2}}* {{-1,-1,-1,-1,1,3}}* %e A348532 {{-2,0,0,0,1,1}} {{-2,0,0,0,0,2}} {{-2,-1,0,1,1,1}} %e A348532 {{-2,-1,0,0,1,2}} {{-2,-1,0,0,0,3}}* {{-2,-1,-1,1,1,2}} %e A348532 {{-2,-1,-1,0,2,2}} {{-2,-1,-1,0,1,3}} {{-2,-1,-1,-1,2,3}}* %e A348532 {{-2,-2,1,1,1,1}}* {{-2,-2,0,1,1,2}} {{-2,-2,0,0,2,2}} %e A348532 {{-2,-2,0,0,1,3}} {{-2,-2,-1,1,2,2}} {{-2,-2,-1,1,1,3}} %e A348532 {{-2,-2,-1,0,2,3}} {{-2,-2,-2,2,2,2}}* {{-2,-2,-2,1,2,3}}* %e A348532 {{-3,0,0,0,0,3}}* {{-3,0,0,0,1,2}}* {{-3,0,0,1,1,1}}* %e A348532 {{-3,-1,1,1,1,1}}* {{-3,-1,0,1,1,2}} {{-3,-1,0,0,2,2}} %e A348532 {{-3,-1,0,0,1,3}} {{-3,-1,-1,1,2,2}} {{-3,-1,-1,1,1,3}} %e A348532 {{-3,-1,-1,0,2,3}} {{-3,-2,1,1,1,2}}* {{-3,-2,0,1,2,2}} %e A348532 {{-3,-2,0,1,1,3}} {{-3,-2,0,0,2,3}} {{-3,-2,-1,2,2,2}}* %e A348532 {{-3,-2,-1,1,2,3}}. %e A348532 Therefore, a(6) = 43. %e A348532 The ones marked with an asterisk are the ones that need reverse splitting %e A348532 to be reached. They are not produced using the rules of A347913. %o A348532 (Python) %o A348532 def nextq(q): %o A348532 used, used2 = set(), set() %o A348532 for i in range(len(q)-1): %o A348532 for j in range(i+1, len(q)): %o A348532 if q[i] == q[j]: %o A348532 if q[i] in used: continue %o A348532 used.add(q[i]) %o A348532 qc = list(q); qc[i] -= 1; qc[j] += 1 %o A348532 yield tuple(sorted(qc)) %o A348532 elif q[j] - q[i] == 2: # assumes q is sorted %o A348532 if q[i] in used2: continue %o A348532 used2.add(q[i]) %o A348532 qc = list(q); qc[i] += 1; qc[j] -= 1 %o A348532 yield tuple(sorted(qc)) %o A348532 def a(n): %o A348532 s = tuple(0 for i in range(n)); reach = {s}; expand = list(reach) %o A348532 while len(expand) > 0: %o A348532 q = expand.pop() %o A348532 for qq in nextq(q): %o A348532 if qq not in reach: %o A348532 reach.add(qq) %o A348532 expand.append(qq) %o A348532 return len(reach) %o A348532 print([a(n) for n in range(13)]) # _Michael S. Branicky_, Oct 21 2021 %Y A348532 Cf. A000571, A347913. %K A348532 nonn,more %O A348532 0,3 %A A348532 _Tejo Vrush_, Oct 21 2021 %E A348532 a(6)-a(19) from _Michael S. Branicky_, Oct 21 2021