This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A348539 #27 Jun 30 2025 18:57:07 %S A348539 1,3,3,6,16,6,10,50,50,10,15,120,225,120,15,21,245,735,735,245,21,28, %T A348539 448,1960,3136,1960,448,28,36,756,4536,10584,10584,4536,756,36,45, %U A348539 1200,9450,30240,44100,30240,9450,1200,45,55,1815,18150,76230,152460,152460,76230,18150,1815,55 %N A348539 Triangle T(n, m) = binomial(n+2, m)*binomial(n+2, n-m), read by rows. %F A348539 G.f.: (x^2*y^2 - 2*x*y + x^2 - 2*x + 1)/(2*x^4*y^2*sqrt(x^2*y^2 + (-2*x^2-2*x)*y + x^2 - 2*x + 1)) + (x*y + x - 1)/(2*x^4*y^2). %F A348539 G.f.: diff(N(x,y),x)*N(x,y)/(x*y^2), where N(x,y) is the g.f. of the Narayana numbers A001263. %e A348539 Triangle starts: %e A348539 [0] 1; %e A348539 [1] 3, 3; %e A348539 [2] 6, 16, 6; %e A348539 [3] 10, 50, 50, 10; %e A348539 [4] 15, 120, 225, 120, 15; %e A348539 [5] 21, 245, 735, 735, 245, 21; %e A348539 [6] 28, 448, 1960, 3136, 1960, 448, 28. %e A348539 ... %e A348539 Taylor series: 1 + 3*x*(y + 1) + 2*x^2*(3*y^2 + 8*y + 3) + 10*x^3*(y^3 + 5*y^2 + 5*y + 1) + 15*x^4 (y^4 + 8*y^3 + 15*y^2 + 8*y + 1) + O(x^5) %p A348539 T := (n, k) -> binomial(n+2, k) * binomial(n+2, n-k): %p A348539 for n from 0 to 9 do seq(T(n, k), k = 0..n) od; # _Peter Luschny_, Oct 22 2021 %t A348539 T[n_, m_] := Binomial[n + 2, m] * Binomial[n + 2, n - m]; Table[T[n, m], {n, 0, 9}, {m, 0, n}] // Flatten (* _Amiram Eldar_, Oct 22 2021 *) %o A348539 (Maxima) T(n,m):=binomial(n+2,m)*binomial(n+2,n-m); %Y A348539 Cf. A001263, A000217, A002694 (with offset 0 are row sums). %K A348539 nonn,tabl %O A348539 0,2 %A A348539 _Vladimir Kruchinin_, Oct 21 2021