cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348546 Number of positive integers with n digits that are equal both to the product of two integers ending with 3 and to that of two integers ending with 7.

This page as a plain text file.
%I A348546 #7 Oct 23 2021 00:09:49
%S A348546 0,0,8,129,1771,21802,252793,2826973,30872783
%N A348546 Number of positive integers with n digits that are equal both to the product of two integers ending with 3 and to that of two integers ending with 7.
%C A348546 a(n) is the number of n-digit numbers in A348544.
%F A348546 a(n) < A052268(n).
%F A348546 a(n) = A346952(n) + A348055(n) - A348547(n).
%F A348546 Conjecture: lim_{n->infinity} a(n)/a(n-1) = 10.
%t A348546 Table[{lo, hi}={10^(n-1), 10^n}; Length@Select[Intersection[Union@Flatten@Table[a*b, {a, 3, Floor[hi/3], 10}, {b, a, Floor[hi/a], 10}], Union@Flatten@Table[a*b, {a, 7, Floor[hi/7], 10}, {b, a, Floor[hi/a], 10}]], lo<#<hi&], {n, 8}]
%o A348546 (Python)
%o A348546 def a(n):
%o A348546   lo, hi = 10**(n-1), 10**n
%o A348546   return len(set(a*b for a in range(3, hi//3+1, 10) for b in range(a, hi//a+1, 10) if lo <= a*b < hi) & set(a*b for a in range(7, hi//7+1, 10) for b in range(a, hi//a+1, 10) if lo <= a*b < hi))
%o A348546 print([a(n) for n in range(1, 9)]) # _Michael S. Branicky_, Oct 22 2021
%Y A348546 Cf. A052268, A346950, A346952, A348054, A348055, A348544, A348547.
%K A348546 nonn,base,hard,more
%O A348546 1,3
%A A348546 _Stefano Spezia_, Oct 22 2021
%E A348546 a(9) from _Michael S. Branicky_, Oct 22 2021